Brazing and soldering are metallurgical joining techniques that use a wetting molten metal to create a joint between two faying surfaces. The quality of the brazing process depends strongly on the wetting properties of the molten filler metal, namely the surface tension and contact angle, and the resulting joint can be susceptible to various defects, such as run-out and underfill, if the material properties or joining conditions are not suitable. In this work, we implement a finite element simulation to predict the formation of such defects in braze processes. This model incorporates both fluid–structure interaction through an arbitrary Eulerian–Lagrangian technique and free surface wetting through conformal decomposition finite element modeling. Upon validating our numerical simulations against experimental run-out studies on a silver-Kovar system, we then use the model to predict run-out and underfill in systems with variable surface tension, contact angles, and applied pressure. Finally, we consider variable joint/surface geometries and show how different geometrical configurations can help to mitigate run-out. This work aims to understand how brazing defects arise and validate a coupled wetting and fluid–structure interaction simulation that can be used for other industrial problems.
We describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop's composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material's wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.
The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.
Control volume analysis models physics via the exchange of generalized fluxes between subdomains. We introduce a scientific machine learning framework adopting a partition of unity architecture to identify physically-relevant control volumes, with generalized fluxes between subdomains encoded via Whitney forms. The approach provides a differentiable parameterization of geometry which may be trained in an end-to-end fashion to extract reduced models from full field data while exactly preserving physics. The architecture admits a data-driven finite element exterior calculus allowing discovery of mixed finite element spaces with closed form quadrature rules. An equivalence between Whitney forms and graph networks reveals that the geometric problem of control volume learning is equivalent to an unsupervised graph discovery problem. The framework is developed for manifolds in arbitrary dimension, with examples provided for H(div) problems in R2 establishing convergence and structure preservation properties. Finally, we consider a lithium-ion battery problem where we discover a reduced finite element space encoding transport pathways from high-fidelity microstructure resolved simulations. The approach reduces the 5.89M finite element simulation to 136 elements while reproducing pressure to under 0.1% error and preserving conservation.
Lithium dendrite growth hinders the use of lithium metal anodes in commercial batteries. We present a 3D model to study the mechanical and electrochemical mechanisms that drive microscale plating. With this model, we investigate electrochemical response across a lithium protrusion characteristic of rough anode surfaces, representing the separator as a porous polymer in non-conformal contact with a lithium anode. The impact of pressure on separator morphology and electrochemical response is of particular interest, as external pressure can improve cell performance. We explore the relationships between plating propensity, stack pressure, and material properties. External pressure suppresses lithium plating due to interfacial stress and separator pore closure, leading to inhomogeneous plating rates. For moderate pressures, dendrite growth is completely suppressed, as plating will occur in the electrolyte-filled gaps between anode and separator. In fast-charging conditions and systems with low electrolyte diffusivities, the benefits of pressure are overridden by ion transport limitations.
Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. We provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.