Geometric Tail Approximation for Reliability and Survivability
Abstract not provided.
Abstract not provided.
Abstract not provided.
The authors examine the problem of how to provide a time code for staff to use in pursuit of innovation. Four potential options are explored ranging from not providing funds for this activity, to charging such efforts against existing or expanded program management and program development funds. One solution that provides funded time without raising laboratory overhead rates is identified and referred to as Innovation Flex Time. This would consist of capturing hours worked in excess of the standard work week but not charged to customers and making those hours available to fund time for exploring new ideas. A brief examination of labor relations laws, and laws regulating laboratory directed research and development suggests that Innovation Flex Time is a viable option for the laboratory. However, implementation of Innovation Flex Time would require NNSA approval and modification of the existing management and operations contract.
Abstract not provided.
A common problem in developing high-reliability systems is estimating the reliability for a population of components that cannot be 100% tested. The radiation survivability of a population of components is often estimated by testing a very small sample to some multiple of the required specification level, known as an overtest. Given a successful test with a sufficient overtest margin, the population of components is assumed to have the required survivability or radiation reliability. However, no mathematical justification for such claims has been crafted without making aggressive assumptions regarding the statistics of the unknown distribution. Here we illustrate a new approach that leverages geometric bounding arguments founded on relatively modest distribution assumptions to produce conservative estimates of component reliability.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.