Publications

3 Results

Search results

Jump to search filters

Drop Interactions with the Conical Shock Structure Generated by a Mach 4.5 Projectile

AIAA Journal

Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.; Daniel, Kyle

This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.

More Details

Drop Interaction with a Conical Shock

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Daniel, Kyle; Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.

This work presents an experimental investigation of the deformation and breakup of water drops behind conical shock waves. A conical shock is generated by firing a bullet at Mach 4.5 past a vertical column of drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension are characterized using backlit stereo videos taken at 500 kHz. A Reynolds-Averaged Navier Stokes (RANS) simulation of the bullet is used to estimate the gas density and velocity fields experienced by the drops. Classical correlations for breakup times derived from planar-shock/drop interactions are evaluated. Predicted drop breakup times are found to be in error by a factor of three or more, indicating that existing correlations are inadequate for predicting the response to the three-dimensional relaxation of the velocity and thermodynamic properties downstream of the conical shock. Next, the Taylor Analogy Breakup (TAB) model, which solves a transient equation for drop deformation, is evaluated. TAB predictions for drop diameter calculated using a dimensionless constant of C2 = 2, as compared to the accepted value of C2 = 2/3, are found to agree within the confidence bounds of the ensemble averaged experimental values for all drops studied. These results suggest the three-dimensional relaxation effects behind conical shock waves alter the drop response in comparison to a step change across a planar shock, and that future models describing the interaction between a drop and a non-planar shock wave should account for flow field variations.

More Details

Pushing the Limits of High-speed X-ray Tomography to See the Unknown

Halls, Benjamin R.; Rahman, Naveed A.; James, Jeremy W.; Reardon, Sam M.; White, Glen W.; Quintana, Enrico C.; Guildenbecher, Daniel R.

First-of-their kind datasets from a high-speed X-ray tomography system were collected, and a novel numerical effort utilizing temporal information to reduce measurement uncertainty was shown. The experimental campaign used three high-speed X-ray imaging systems to collect data at 100 kHz of a scene containing high-velocity objects. The scene was a group of known objects propelled by a 12-gauge shotgun shell reaching speeds of hundreds of meters per second. These data represent a known volume where the individual components are known, with experimental uncertainties that can be used for reconstruction algorithm validation. The numerical effort used synthetic volumes in MATLAB to produce projections along known lines of sight to perform tomographic reconstructions. These projections and reconstructions were performed on a single object at two orientations, representing two timesteps, to increase the reconstruction accuracy.

More Details
3 Results
3 Results