Application of Research Reactor Environments for Validation of the IRDFF-II Dosimetry Cross Section Library
Abstract not provided.
Abstract not provided.
Abstract not provided.
Silicon calorimeters have been used for active radiation dosimetry in the central cavity of the Annular Core Research Reactor (ACRR) for over a decade. Recently, there has been interest in using other materials for calorimetry to accurately measure the prompt gamma-ray energy deposition in the mixed neutron and gamma-ray environment. The calorimeters used in the ACRR use a thermocouple (TC) to measure the change in temperature of specific materials in the radiation environment. The temperature change is related to the instantaneous dose received by the material in a pulse-transient operation. SOLIDWORKS Simulation and ANSYS Mechanical were used to model the calorimeter and analyze the thermal behavior under pulse-transient conditions. This report compares the results from modeling to experimental results for selected calorimeter materials and radiation environments. These materials include bismuth, tin, zirconium, and silicon. Calorimeters assembled with each material were irradiated in the ACRR central cavity in the free- field, LB44, CdPoly, and PLG radiation environments. The neutronics code Monte-Carlo N- Particle (MCNP) was used to calculate the neutron and gamma-ray response of the calorimeter materials at the experimental locations in the central cavity. Different response tallies were used and found to give different results for the gamma-ray energy deposition. It was determined that performing the neutron/gamma-ray/electron transport in MCNP using the *F8 electron tally gave the overall best agreement with the experimental results. The *F8 tally, however, is much more computationally intensive than the neutron/gamma-ray transport calculations. Also, this report contains parametric analyses that examine the ways to improve the current design of the calorimeters. One finding from the parametric analysis was that the TC should be placed closer to the outer radius of the disks to obtain a measurement closer to the maximum temperature of the disk. Also, the parametric analysis showed that the most dominant mechanism of heat loss in the calorimeters is conduction through the alumina posts. In future designs, the conduction should be minimized to reduce the effect of heat loss on the measurements.
EPJ Web of Conferences
A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.
In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.
AIP Conference Proceedings
A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government. © 2005 American Institute of Physics.