Stress corrosion cracking behavior of stainless steel 304 L was investigated in full immersion, evaporated artificial sea salt brines (ASW) at 55 °C. It was observed that brines representative of thermodynamically stable brines at lower relative humidity (40% RH, MgCl2-dominant) had a faster crack growth rate than high relative humidity brines (76% RH, NaCl-dominant). Observed crack growth rates (da/dt) under constant stress intensity (K) conditions were determined to be independent of transitioning procedure (rising K or decreasing frequency) regardless of solutions investigated for the orientation presented. Further, positive strain rates had little to no impact on the observed da/dt. The observed behavior suggests an anodic dissolution enhanced hydrogen embrittlement mechanism for SS304L in concentrated ASW environments at 55 °C. Additional explorations further examined environmental influences on da/dt. Nitrate additions to 40% ASW at 55 °C solutions were shown to decrease measured da/dt and further additions stopped measurable crack growth. After sufficient nitrate had been added to fully stifle crack growth, a temperature increase to 75 °C induced cracking again, and a subsequent decrease to 55 °C once again stopped da/dt. These tests demonstrate the importance of ascertaining both brine-specific chemical and dynamic environmental influences on da/dt.
Additive manufacturing of metal components enables rapid fabrication of complex geometries. However, metal additive manufacturing also introduces new morphological and microstructural characteristics which might be detrimental to component performance. Here we report the pitting corrosion properties of wrought and additively manufactured 316L stainless steel after atmospheric exposure to coastal environments and laboratory-created environments. Qualitative visualization in combination with quantitative analysis of resulting pits provided an in-depth understanding of pitting differences between wrought and additively manufactured 316L stainless steel and between coastal and laboratory-based exposure. Optical and scanning electron microscopy were utilized for visualization, while white light interferometry measured pits across approximately 5mm x 5mm areas on each sample. Post-processing of the interferometry data enables quantification of pitting attack for each sample in terms of both pit depth and pit volume. The pitting analysis introduced herein offers a new technique to compare pitting attack between different manufacturing processes and materials.
Pitting corrosion was evaluated on stainless steels 304H, 304, and 316L the surfaces of which had ASTM seawater printed on them as a function of surface roughness after exposure to an exemplar realistic atmospheric diurnal cycle for up to one year. Methods to evaluate pitting damage included optical imaging, scanning electron microscopy imaging, profilometry analysis, and polarization scans. The developed cyclic exposure environment did not significantly influence pitting morphology nor depth in comparison to prior static exposure environments. Cross-hatching was observed in a majority of pits for all material compositions with the roughest surface finish (#4 finish) and in all surface finishes for the 304H composition. Evidence is provided that cross-hatched pit morphologies are caused by slip bands produced during the grinding process for the #4 finish or by material processing. Additionally, micro-cracking was observed in pits formed on samples with the #4 surface finish and was greatly reduced or absent for pits formed on samples with smooth surface finishes. This suggests that both a low RH leading to an MgCl2-dominated environment and a rough surface containing significant residual stress are necessary for micro-cracking. Finally, the use of various characterization techniques and cross sectioning was employed to both qualitatively and quantitatively assess pitting damage across all SS compositions and surface finishes.
The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.