Nanoscale heterogeneities at Transition Metal Dichalcogenide-Au Interfaces
Abstract not provided.
Abstract not provided.
APL Photonics
Precise control of light-matter interactions at the nanoscale lies at the heart of nanophotonics. However, experimental examination at this length scale is challenging since the corresponding electromagnetic near-field is often confined within volumes below the resolution of conventional optical microscopy. In semiconductor nanophotonics, electromagnetic fields are further restricted within the confines of individual subwavelength resonators, limiting access to critical light-matter interactions in these structures. In this work, we demonstrate that photoelectron emission microscopy (PEEM) can be used for polarization-resolved near-field spectroscopy and imaging of electromagnetic resonances supported by broken-symmetry silicon metasurfaces. We find that the photoemission results, enabled through an in situ potassium surface layer, are consistent with full-wave simulations and far-field reflectance measurements across visible and near-infrared wavelengths. In addition, we uncover a polarization-dependent evolution of collective resonances near the metasurface array edge taking advantage of the far-field excitation and full-field imaging of PEEM. Here, we deduce that coupling between eight resonators or more establishes the collective excitations of this metasurface. All told, we demonstrate that the high-spatial resolution hyperspectral imaging and far-field illumination of PEEM can be leveraged for the metrology of collective, non-local, optical resonances in semiconductor nanophotonic structures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs’ electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.