The mechanical behavior of partial-penetration laser welds exhibits significant variability in engineering quantities such as strength and apparent ductility. Understanding the root cause of this variability is important when using such welds in engineering designs. In Part II of this work, we develop finite element simulations with geometry derived from micro-computed tomography (μCT) scans of partial-penetration 304L stainless steel laser welds that were analyzed in Part I. We use these models to study the effects of the welds’ small-scale geometry, including porosity and weld depth variability, on the structural performance metrics of weld ductility and strength under quasi-static tensile loading. We show that this small-scale geometry is the primary cause of the observed variability for these mechanical response quantities. Additionally, we explore the sensitivity of model results to the conversion of the μCT data to discretized model geometry using different segmentation algorithms, and to the effect of small-scale geometry simplifications for pore shape and weld root texture. The modeling approach outlined and results of this work may be applicable to other material systems with small-scale geometric features and defects, such as additively manufactured materials.
Fiber reinforced composites are increasingly used in advanced applications due to advantageous qualities including high strength-To-weight ratio. The ability to tailor composite structures to meet specific performance criteria is particularly desirable. In practice designs must often balance multiple objectives with conflicting behavior. Objectives of this work were to optimize lamina orientations of a three-ply carbon fiber reinforced composite structure for the coupled solid mechanics and dynamics considerations of minimizing max principal stress while maximizing fundamental frequency. Two approaches were investigated: Pareto set optimization (PSO), and multi-objective genetic algorithm (MOGA). In PSO, a single objective function is constructed as a weighted sum of multiple objective terms. Multiple weighting sets are evaluated to determine a Pareto set of solutions. MOGA mimics evolutionary principles, where the best design points populate subsequent generations. Instead of weight factors, MOGA uses a domination count that ranks population members. Results showed both methods converged to solutions along the same Pareto front. The PSO method calculated fewer function evaluations, but provided many fewer final data points. At a certain threshold, MOGA provides more solutions with fewer calculations. The PSO method requires more user intervention which may introduce bias, but can largely be run in parallel. In contrast, MOGA generation are evaluated in series. The Pareto front showed the trend of increasing frequency with increasing stress. At the low stress and frequency extreme, the stacking sequence tended toward (45°/90°/45°) with max principal stress located in the inner ply in the hoop direction. At high stress and frequency, the stacking sequences (90°/∗/90°) indicated that the middle ply orientation was less significant. A mesh convergence study and dynamic validation experiments gave confidence to the computational model. Future work will include an uncertainty quantification about selected solutions. The final selected solution will be fabricated and experimental validation testing will be conducted.
Process induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials coefficients of thermal expansion as well as the shrinkage upon cure exhibited by most thermoset polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials curing parameters, it is possible that these residual stresses can result in interlaminar delamination and fracture within the composite as well as plastic deformation in the structures metallic materials. It is important to consider potential residual stresses when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be prohibitive, both in terms of financial and temporal costs. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. A simplified method for simulating residual stresses was previously validated with two simple bi-material structures. Continuing on, the objective of this study is to further validate the simplified method for simulating residual stresses for bi-material split rings of different composites and layup variations. The validation process uses uncertainty quantification to develop a distribution of possible simulated residual stress states that are compared to experimentally measured residual stress states of fabricated structures similar to those simulated. The results of the comparisons indicate that the proposed finite element modeling approach is capable of accurately simulating the formation of residual stresses in composite structures and a temperature independent material model is adequate within the composites glassy region.
Process induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials' coefficients of thermal expansion as well as the shrinkage upon cure exhibited by most thermoset polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials' curing parameters, it is possible that these residual stresses can result in interlaminar delamination and fracture within the composite as well as plastic deformation in the structure's metallic materials. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be prohibitive, both in terms of financial and temporal costs. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. A simplified method for simulating residual stresses was previously validated with two simple bi-material structures composed of aluminum and a carbon fiber/epoxy resin composite. Therefore, the objective of this study is to further validate the simplified method for simulating residual stresses for different composites and more complex structures. The simplified method accounts for both the coefficient of thermal expansion mismatch and polymer shrinkage through the calibration to an experimentally-determined stress-free temperature. This was implemented in Sandia National Laboratories' solid mechanics code, SIERRA, to model split rings with temperature independent and dependent material models. The split rings are comprised of two materials: Aluminum with either a carbon fiber/epoxy resin composite or a glass fiber/epoxy resin composite. Concurrent with the computational efforts, structures similar to those modeled are fabricated and the residual stresses are quantified through the measurement of deformations. The simulations' results are compared to the experimentally observed behaviors for model validation. The results of the comparisons indicate that the proposed finite element modeling approach is capable of accurately simulating the formation of residual stresses in composite structures and a temperature independent material model is adequate within the composite's glassy region. Copyright 2017. Used by CAMX - The Composites and Advanced Materials Expo.