An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.
We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.
We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.
A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.
A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.
We report that a critical component of the magnetically driven implosion experiments at Sandia National Laboratories is the delivery of high-current, 10s of MA, from the Z pulsed power facility to a target. In order to assess the performance of the experiment, it is necessary to measure the current delivered to the target. Recent Magnetized Liner Inertial Fusion (MagLIF) experiments have included velocimetry diagnostics, such as PDV (Photonic Doppler Velocimetry) or Velocity Interferometer System for Any Reflector, in the final power feed section in order to infer the load current as a function of time. However, due to the nonlinear volumetrically distributed magnetic force within a velocimetry flyer, a complete time-dependent load current unfold is typically a time-intensive process and the uncertainties in the unfold can be difficult to assess. In this paper, we discuss how a PDV diagnostic can be simplified to obtain a peak current by sufficiently increasing the thickness of the flyer. This effectively keeps the magnetic force localized to the flyer surface, resulting in fast and highly accurate measurements of the peak load current. Additionally, we show the results of experimental peak load current measurements from the PDV diagnostic in recent MagLIF experiments.
Many experiments on Sandia National Laboratories' Z Pulsed Power Facility - a 30 MA, 100 ns rise-time, pulsed-power driver - use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.
A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ∼2 kJ laser that must pass through a ∼1.5-3.5-μm-thick polyimide "window" at the target's laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel, initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility's cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. The MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.