Publications

Results 1–25 of 44
Skip to search filters

An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Gomez, M.R.; Ruiz, D.E.; Slutz, S.A.; Harvey-Thompson, Adam J.; Jennings, C.A.; Knapp, P.F.; Schmit, P.F.; Weis, M.R.; Awe, T.J.; Chandler, Gordon A.; Mangan, M.; Myers, C.E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Lewis, W.E.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Smith, I.C.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, D.B.

We present an overview of the magneto-inertial fusion (MIF) concept Magnetized Liner Inertial Fusion (MagLIF) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or 'liner' is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>1013 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Lewis, William L.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Lewis, William L.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly D.; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny P.; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Narrowband Self-Emission X-ray Imaging of MagLIF Targets on Z

Gomez, Matthew R.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, Gregory S.; Knapp, Patrick K.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Robertson, Grafton K.; Speas, Christopher S.; Maurer, A.; Ampleford, David A.; Rochau, G.A.; Doron, R.D.; O. Nedostup, E.O.; Stambulchik, Stambulchik; Zarnitsky, Y.Z.; Maron, Y.M.; Paguio, Reny P.; Tomlinson, Kurt T.; Huang, H.H.; Smith, Gary S.; Taylor, Randy T.

Abstract not provided.

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Galloway, B.R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, Jerry A.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, Joseph C.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Perea, L.; Peterson, Kyle J.; Porter, James D.; Rambo, Patrick K.; Robertson, Grafton K.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; York, Adam Y.; Paguio, R.R.; Smith, G.E.; Maudlin, M.M.; Pollock, B.P.

Abstract not provided.

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, B.R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark W.; Knapp, Patrick K.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Woodbury, Daniel W.; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Geissel, Matthias G.; Jennings, Christopher A.; Jennings, Christopher A.; Weis, Matthew R.; Weis, Matthew R.; Ampleford, David A.; Ampleford, David A.; Bliss, David E.; Bliss, David E.; Chandler, Gordon A.; Chandler, Gordon A.; Fein, Jeffrey R.; Fein, Jeffrey R.; Galloway, B.R.; Galloway, B.R.; Glinsky, Michael E.; Glinsky, Michael E.; Gomez, Matthew R.; Gomez, Matthew R.; Hahn, K.D.; Hahn, K.D.; Hansen, Stephanie B.; Hansen, Stephanie B.; Harding, Eric H.; Harding, Eric H.; Kimmel, Mark W.; Kimmel, Mark W.; Knapp, Patrick K.; Knapp, Patrick K.; Perea, L.; Perea, L.; Peterson, Kara J.; Peterson, Kara J.; Porter, John L.; Porter, John L.; Rambo, Patrick K.; Rambo, Patrick K.; Robertson, Grafton K.; Robertson, Grafton K.; Rochau, G.A.; Rochau, G.A.; Ruiz, Daniel E.; Ruiz, Daniel E.; Schwarz, Jens S.; Schwarz, Jens S.; Shores, Jonathon S.; Shores, Jonathon S.; Sinars, Daniel S.; Sinars, Daniel S.; Slutz, Stephen A.; Slutz, Stephen A.; Smith, Ian C.; Smith, Ian C.; Speas, Christopher S.; Speas, Christopher S.; Whittemore, K.; Whittemore, K.; Woodbury, Daniel W.; Woodbury, Daniel W.; Smith, G.E.; Smith, G.E.

Abstract not provided.

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy

Physics of Plasmas

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Jennings, C.A.; Weis, M.R.; Gomez, M.R.; Fein, Jeffrey R.; Ampleford, David A.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, C.L.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, Ian C.; Smith, Ian C.; Speas, C.S.; Whittemore, K.; Woodbury, D.

A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.

More Details

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, M.R.; Harding, Eric H.; Geissel, Matthias G.; Ampleford, David A.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, C.A.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, D.E.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, G.E.; Smith, Ian C.; Speas, C.S.; Whittemore, K.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Design and testing of a magnetically driven implosion peak current diagnostic

Physics of Plasmas

Hess, Mark H.; Peterson, Kyle J.; Ampleford, David A.; Hutsel, Brian T.; Jennings, C.A.; Gomez, Matthew R.; Dolan, Daniel H.; Robertson, Grafton K.; Payne, S.L.; Stygar, William A.; Martin, M.R.; Sinars, Daniel S.

A critical component of the magnetically driven implosion experiments at Sandia National Laboratories is the delivery of high-current, 10s of MA, from the Z pulsed power facility to a target. In order to assess the performance of the experiment, it is necessary to measure the current delivered to the target. Recent Magnetized Liner Inertial Fusion (MagLIF) experiments have included velocimetry diagnostics, such as PDV (Photonic Doppler Velocimetry) or Velocity Interferometer System for Any Reflector, in the final power feed section in order to infer the load current as a function of time. However, due to the nonlinear volumetrically distributed magnetic force within a velocimetry flyer, a complete time-dependent load current unfold is typically a time-intensive process and the uncertainties in the unfold can be difficult to assess. In this paper, we discuss how a PDV diagnostic can be simplified to obtain a peak current by sufficiently increasing the thickness of the flyer. This effectively keeps the magnetic force localized to the flyer surface, resulting in fast and highly accurate measurements of the peak load current. In addition, we show the results of experimental peak load current measurements from the PDV diagnostic in recent MagLIF experiments.

More Details

A 7.2 keV spherical x-ray crystal backlighter for two-frame, two-color backlighting at Sandia's Z Pulsed Power Facility

Review of Scientific Instruments

Schollmeier, Marius; Knapp, P.F.; Ampleford, David A.; Harding, Eric H.; Jennings, C.A.; Lamppa, Derek C.; Loisel, G.P.; Martin, M.R.; Robertson, Grafton K.; Shores, J.E.; Smith, Ian C.; Speas, C.S.; Weis, M.R.; Porter, John L.; McBride, Ryan D.

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility - a 30 MA, 100 ns rise-time, pulsed-power driver - use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

More Details

Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program

Review of Scientific Instruments

Awe, T.J.; Shelton, Keegan P.; Sefkow, Adam B.; Lamppa, Derek C.; Baker, J.L.; Rovang, Dean C.; Robertson, Grafton K.

A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ∼2 kJ laser that must pass through a ∼1.5-3.5-μm-thick polyimide "window" at the target's laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel, initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility's cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. The MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.

More Details

Controlling rayleigh-taylor instabilities in magnetically driven solid metal shells by means of a dynamic screw pinch

Physical Review Letters

Schmit, Paul S.; Velikovich, A.L.; McBride, Ryan D.; Robertson, Grafton K.

Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells ("liners"), the magnetic field driving the implosion can exacerbate the RTI. We suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstrate that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.

More Details

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Results 1–25 of 44
Results 1–25 of 44