Reduced Representation and Compression Techniques for Patch-Based Relaxation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
New patch smoothers or relaxation techniques are developed for solving linear matrix equations coming from systems of discretized partial differential equations (PDEs). One key linear solver challenge for many PDE systems arises when the resulting discretization matrix has a near null space that has a large dimension, which can occur in generalized magnetohydrodynamic (GMHD) systems. Patch-based relaxation is highly effective for problems when the null space can be spanned by a basis of locally supported vectors. The patch-based relaxation methods that we develop can be used either within an algebraic multigrid (AMG) hierarchy or as stand-alone preconditioners. These patch-based relaxation techniques are a form of well-known overlapping Schwarz methods where the computational domain is covered with a series of overlapping sub-domains (or patches). Patch relaxation then corresponds to solving a set of independent linear systems associated with each patch. In the context of GMHD, we also reformulate the underlying discrete representation used to generate a suitable set of matrix equations. In general, deriving a discretization that accurately approximates the curl operator and the Hall term while also producing linear systems with physically meaningful near null space properties can be challenging. Unfortunately, many natural discretization choices lead to a near null space that includes non-physical oscillatory modes and where it is not possible to span the near null space with a minimal set of locally supported basis vectors. Further discretization research is needed to understand the resulting trade-offs between accuracy, stability, and ease in solving the associated linear systems.
Abstract not provided.
Abstract not provided.
Numerical Linear Algebra with Applications
A well-known strategy for building effective preconditioners for higher-order discretizations of some PDEs, such as Poisson's equation, is to leverage effective preconditioners for their low-order analogs. In this work, we show that high-quality preconditioners can also be derived for the Taylor–Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the (Formula presented.) discretization of the Stokes operator as a preconditioner for the (Formula presented.) discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess–Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the (Formula presented.) system, our ultimate motivation is to apply algebraic multigrid within solvers for (Formula presented.) systems via the (Formula presented.) discretization, which will be considered in a companion paper.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Matrix Analysis and Applications
We propose a new algorithm for the fast solution of large, sparse, symmetric positive-definite linear systems, spaND (sparsified Nested Dissection). It is based on nested dissection, sparsification, and low-rank compression. After eliminating all interiors at a given level of the elimination tree, the algorithm sparsifies all separators corresponding to the interiors. This operation reduces the size of the separators by eliminating some degrees of freedom but without introducing any fill-in. This is done at the expense of a small and controllable approximation error. The result is an approximate factorization that can be used as an efficient preconditioner. We then perform several numerical experiments to evaluate this algorithm. We demonstrate that a version using orthogonal factorization and block-diagonal scaling takes fewer CG iterations to converge than previous similar algorithms on various kinds of problems. Furthermore, this algorithm is provably guaranteed to never break down and the matrix stays symmetric positive-definite throughout the process. We evaluate the algorithm on some large problems show it exhibits near-linear scaling. The factorization time is roughly \scrO (N), and the number of iterations grows slowly with N.
SIAM Journal on Scientific Computing
This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.
Abstract not provided.
Abstract not provided.
This report is the final report for the LDRD project "Fast and Robust Linear Solvers using Hierarchical Matrices". The project was a success. We developed two novel algorithms for solving sparse linear systems. We demonstrated their effectiveness on ill-conditioned linear systems from ice sheet simulations. We showed that in many cases, we can obtain near-linear scaling. We believe this approach has strong potential for difficult linear systems and should be considered for other Sandia and DOE applications. We also report on some related research activities in dense solvers and randomized linear algebra.