Publications

Results 1–25 of 48

Search results

Jump to search filters

Three-dimensional magnetohydrodynamic modeling of auto-magnetizing liner implosions on the Z accelerator

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.

Auto-magnetizing (AutoMag) liners are cylindrical tubes that employ helical current flow to produce strong internal axial magnetic fields prior to radial implosion on ~100 ns timescales. AutoMag liners have demonstrated strong uncompressed axial magnetic field production (>100 T) and remarkable implosion uniformity during experiments on the 20 MA Z accelerator. However, both axial field production and implosion morphology require further optimization to support the use of AutoMag targets in magnetized liner inertial fusion (MagLIF) experiments. Data from experiments studying the initiation and evolution of dielectric flashover in AutoMag targets on the Mykonos accelerator have enabled the advancement of magnetohydrodynamic (MHD) modeling protocols used to simulate AutoMag liner implosions. Implementing these protocols using ALEGRA has improved the comparison of simulations to radiographic data. Specifically, both the liner in-flight aspect ratio and the observed width of the encapsulant-filled helical gaps during implosion in ALEGRA simulations agree more closely with radiography data compared to previous GORGON simulations. Although simulations fail to precisely reproduce the measured internal axial magnetic field production, improved agreement with radiography data inspired the evaluation of potential design improvements with newly developed modeling protocols. Three-dimensional MHD simulation studies focused on improving AutoMag target designs, specifically seeking to optimize the axial magnetic field production and enhance the cylindrical implosion uniformity for MagLIF. Importantly, by eliminating the driver current prepulse and reducing the initial inter-helix gap widths in AutoMag liners, simulations indicate that the optimal 30–50 T range of precompressed axial magnetic field for MagLIF on Z can be accomplished concurrently with improved cylindrical implosion uniformity.

More Details

Magnetically Ablated Reconnection on Z (MARZ) collaboration

Hare, Jack; Datta, Rishabh; Lebedev, Sergey; Chittenden, Jeremy P.; Crilly, Aidan; Halliday, Jack; Chandler, Katherine; Jennings, Christopher A.; Ampleford, David A.; Bland, Simon; Aragon, Carlos A.; Yager-Elorriaga, David A.; Hansen, Stephanie B.; Shipley, Gabriel A.; Webb, Timothy J.; Harding, Eric H.; Robertson, Grafton K.; Montoya, Michael M.; Kellogg, Jeffrey W.; Harmon, Roger L.; Molina, Leo M.

Abstract not provided.

Magnetized High-Energy-Density Plasma Experiments at MIT

Hare, Jack; Datta, Rishabh; Varnish, Thomas; Lebedev, Sergey; Jerry, Chittenden; Crilly, Aidan; Halliday, Jack; Russell, Danny; Chandler, Katherine; Fox, Will; Hantao, Ji; Myers, Clayton E.; Aragon, Carlos A.; Jennings, Christopher A.; Ampleford, David A.; Hansen, Stephanie B.; Yager-Elorriaga, David A.; Harding, Eric H.; Shipley, Gabriel A.; Harmon, Roger L.; Gonzalez, Josue; Molina, Leo M.

Abstract not provided.

Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Hare, Jack; Datta, Rishabh; Sergey, Lebedev; Chittenden, Jerry; Crilly, Aidan; Bland, Simon; Halliday, Jack; Russell, Danny; Fox, Will; Hantao, Ji; Kuranz, Carolyn; Myers, Clayton E.; Aragon, Carlos A.; Jennings, Christopher A.; Ampleford, David A.; Beckwith, Kristian B.; Harding, Eric H.; Hansen, Stephanie B.; Dunham, Gregory S.; Edens, Aaron E.; Gonzalez, Josue; Harmon, Roger L.; Kellogg, Jeffrey W.; Jones, Michael J.; Looker, Quinn M.; Molina, Leo M.; Montoya, Michael L.; Patel, Sonal P.; Loisel, Guillaume P.; Speas, Christopher S.; Webb, Timothy J.; Yager-Elorriaga, David A.; Shipley, Gabriel A.; Chandler, Katherine

Abstract not provided.

Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform

Physics of Plasmas

Yager-Elorriaga, David A.; Doss, Forrest W.; Shipley, Gabriel A.; Ruiz, Daniel E.; Porwitzky, Andrew J.; Fein, Jeffrey R.; Merritt, Elizabeth C.; Martin, Matthew; Myers, Clayton E.; Jennings, Christopher A.; Marshall, Dustin J.; Shulenburger, Luke N.

The “Decel” platform at Sandia National Laboratories investigates the Richtmyer–Meshkov instability (RMI) in converging geometry under high energy density conditions [Knapp et al., Phys. Plasmas 27, 092707 (2020)]. In Decel, the Z machine magnetically implodes a cylindrical beryllium liner filled with liquid deuterium, launching a converging shock toward an on-axis beryllium rod machined with sinusoidal perturbations. The passage of the shock deposits vorticity along the Be/D2 interface, causing the perturbations to grow. In this paper, we present platform improvements along with recent experimental results. To improve the stability of the imploding liner to the magneto Rayleigh–Taylor instability, we modified its acceleration history by shortening the Z electrical current pulse. Next, we introduce a “split rod” configuration that allows two axial modes to be fielded simultaneously in different axial locations along the rod, doubling our data per experiment. We then demonstrate that asymmetric slots in the return current structure modify the magnetic drive pressure on the surface of the liner, advancing the evolution on one side of the rod by multiple ns compared to its 180° counterpart. This effectively enables two snapshots of the instability at different stages of evolution per radiograph with small deviations of the cross-sectional profile of the rod from the circular. Using this platform, we acquired RMI data at 272 and 157 μm wavelengths during the single shock stage. Finally, we demonstrate the utility of these data for benchmarking simulations by comparing calculations using ALEGRA MHD and RageRunner.

More Details

On the initiation and evolution of dielectric breakdown in auto-magnetizing liner experiments

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.; Hutsel, Brian T.; Yager-Elorriaga, David A.

Auto-magnetizing (AutoMag) liners are cylindrical tubes composed of discrete metallic helices encapsulated in insulating material; when driven with a ∼2 MA, ∼100-ns prepulse on the 20 MA, 100-ns rise time Z accelerator, AutoMag targets produced >150 T internal axial magnetic fields [Shipley et al., Phys. Plasmas 26, 052705 (2019)]. Once the current rise rate of the pulsed power driver reaches sufficient magnitude, the induced electric fields in the liner cause dielectric breakdown of the insulator material and, with sufficient current, the cylindrical target radially implodes. The dielectric breakdown process of the insulating material in AutoMag liners has been studied in experiments on the 500-900 kA, ∼100-ns rise time Mykonos accelerator. Multi-frame gated imaging enabled the first time-resolved observations of photoemission from dynamically evolving plasma distributions during the breakdown process in AutoMag targets. Using magnetohydrodynamic simulations, we calculate the induced electric field distribution and provide a detailed comparison to the experimental data. We find that breakdown in AutoMag targets does not primarily depend on the induced electric field in the gaps between conductive helices as previously thought. Finally, to better control the dielectric breakdown time, a 12-32 mJ, 170 ps ultraviolet (λ = 266 nm) laser was implemented to irradiate the outer surface of AutoMag targets to promote breakdown in a controlled manner at a lower internal axial field. The laser had an observable effect on the time of breakdown and subsequent plasma evolution, indicating that pulsed UV lasers can be used to control breakdown timing in AutoMag.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Investigating Volumetric Inclusions of Semiconductor Materials to Improve Flashover Resistance in Dielectrics

Steiner, Adam M.; Siefert, Christopher S.; Shipley, Gabriel A.; Redline, Erica M.; Dickens, Sara D.; Jaramillo, Rex J.; Chavez, Tom C.; Hutsel, Brian T.; Laros, James H.; Peterson, Kyle J.; Bell, Kate S.; Balogun, Shuaib; Losego, Mark; Sammeth, Torin; Kern, Ian; Harjes, Cameron; Gilmore, Mark A.; Lehr, Jane

Abstract not provided.

Results 1–25 of 48
Results 1–25 of 48