Testing of a compact Bremsstrahlung diode was performed at the High Energy Radiation Megavolt Electron Source III (HERMES-III) was performed at Sandia National Laboratories in November, 2023. The compact diode described here is the first prototype diode in a campaign to optimize a Bremsstrahlung diode in terms of size and dose production. The goal was to test the diode at about 13MV, and the experiment realized between 10-12MV at the diode. Modeling and simulation of this geometry was performed
The Z machine is a current driver producing up to 30 MA in 100 ns that utilizes a wide range of diagnostics to assess accelerator performance and target behavior conduct experiments that use the Z target as a source of radiation or high pressures. Here, we review the existing suite of diagnostic systems, including their locations and primary configurations. The diagnostics are grouped in the following categories: pulsed power diagnostics, x-ray power and energy, x-ray spectroscopy, x-ray imaging (including backlighting, power flow, and velocimetry), and nuclear detectors (including neutron activation). We will also briefly summarize the primary imaging detectors we use at Z: image plates, x-ray and visible film, microchannel plates, and the ultrafast x-ray imager. The Z shot produces a harsh environment that interferes with diagnostic operation and data retrieval. We term these detrimental processes “threats” of which only partial quantifications and precise sources are known. Finally, we summarize the threats and describe techniques utilized in many of the systems to reduce noise and backgrounds.
A challenge for TW-class accelerators, such as Sandia's Z machine, is efficient power coupling due to current loss in the final power feed. It is also important to understand how such losses will scale to larger next generation pulsed power (NGPP) facilities. While modeling is studying these power flow losses it is important to have diagnostic that can experimentally measure plasmas in these conditions and help inform simulations. The plasmas formed in the power flow region can be challenging to diagnose due to both limited lines of sight and being at significantly lower temperatures and densities than typical plasmas studied on Z. This necessitates special diagnostic development to accurately measure the power flow plasma on Z.
Power-flow studies on the 30-MA, 100-ns Z facility at Sandia National Labs have shown that plasmas in the facility's magnetically insulated transmission lines can result in a loss of current to the load.1 During the current pulse, electrode heating causes neutral surface contaminants (water, hydrogen, hydrocarbons, etc.) to desorb, ionize, and form plasmas in the anode-cathode gap.2 Shrinking typical electrode thicknesses (∼1 cm) to thin foils (5-200 μm) produces observable amounts of plasma on smaller pulsed power drivers <1 MA).3 We suspect that as electrode material bulk thickness decreases relative to the skin depth (50-100 μm for a 100-500-ns pulse in aluminum), the thermal energy delivered to the neutral surface contaminants increases, and thus desorb faster from the current carrying surface.
Radiographic diodes focus on an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the six-cavity radiographic integrated test stand (RITS-6) inductive voltage adder driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analysis of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below approximately few millimeters. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
The self-magnetic pinch (SMP) diode is a type of radiographic diode used to generate an intense electron beam for radiographic applications. At Sandia National Laboratories, SMP was the diode load for the six-cavity radiographic integrated test stand inductive voltage adder (IVA) driver operated in a magnetically insulated transmission line (MITL). The MITL contributes a flow current in addition to the current generated within the diode itself. Extensive experiments with a MITL of 40 ω load impedance [T. J. Renk et al., Phys. Plasmas 29, 023105 (2022)] indicate that the additional flow current leads to results similar to what might be expected from a conventional high-voltage interface driver, where flow current is not present. However, when the MITL flow impedance was increased to 80 ω, qualitatively different diode behavior was observed. This includes large retrapping waves suggestive of an initial coupling to low impedance as well as diode current decreasing with time even as the total current does not. A key observation is that the driver generates total current (flow + diode) consistent with the flow impedance of the MITL used. The case is made in this paper that the 80 ω MITL experiments detailed here can only be understood when the IVA-MITL-SMP diode is considered as a total system. The constraint of fixed total current plus the relatively high flow impedance limits the ability of the diode (whether SMP or other type) to act as an independent load. An unexpected new result is that in tracking the behavior of the electron strike angle on the converter as a function of time, we observed that the conventional cIVx "Radiographic"radiation scaling (where x ∼2.2) begins to break down for voltages above 8 MV, and cubic scaling is required to recover accurate angle tracking.
Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
The goals of an electron beam-driven radiographic source are the focusing of high current at high voltage to a minimal spot size with excellent shot-to-shot reproducibility. The Self-Magnetic Pinch (SMP) diode makes use of such an intense electron beam impinging on a high-atomic weight (tantalum) converter, a counter-streaming ion beam to help minimize the spot size, and operation in a magnetic field-free diode region which further encourages small spot size. Through a series of diode development experiments, output voltages up to 12.5 MV and output currents up to 225 kA have been characterized, with resulting spot sizes below ~ few mm. Scaling studies with parameter variation, such as diode aspect ratio and anode-cathode (A-K) gap variation, give systematic validation to what has heretofore been noted anecdotally by other research groups. While the lack of an imbedded magnetic field helps minimize the SMP spot size, a secondary result may be the generation of beam instabilities which can terminate the radiation pulse. There is anecdotal evidence that in-situ DC heating of the diode region can help stabilize the beam pinch. Clear experimental evidence exists that DC heating/RF cleaning results in better control over the counter-streaming ion population. Expanded use of spatial dose-rate detection is shown to yield new insights into electron beam dynamics in the SMP diode. An attendant study of the SMP diode as a load for an Inductive Voltage Adder (IVA) driver leads to insights into the behavior of the IVA-SMP diode configuration, viewed as a total system, and yields constraints on the overall impedance behavior of the SMP diode load.
Large pulsed power accelerators deliver multi-MJ pulses of electrical energy to a variety of high energy density (HED) physics experiments that support stockpile science programs. Understanding the plasma formation mechanisms and resulting electrical power transport (or "power flow") in the vacuum magnetically insulated transmission lines (MITLs) is an important area of ongoing research, and could provide a means to improve the performance of today's pulsed power accelerators while improving confidence in the design options for next-generation pulsed power concepts. Power flow science has been studied for decades, but these studies have not provided a predictive understanding of plasma formation and expansion in MITL systems. Several recent factors in pulsed power system design have generated a renewed (and urgent) interest in developing validated, multi-physics power flow engineering models with increased scrutiny and understanding. Examples of these factors include (i) the use of high inductance experimental configurations that could increase current "loss", (ii) interest in long-pulse applications that require predictable pulse shapes, and (iii) the desire to develop a deeper understanding of how current loss phenomena scale to larger accelerator configurations. This work is directed to support the validation of multi-physics power flow engineering models required to realize pulsed power systems for the NNSA mission.
In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. In conclusion, the magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.