Publications

Results 1–25 of 78
Skip to search filters

Observation of Potential-Induced Hydration on the Surface of Ceramic Proton Conductors Using In Situ Near-Ambient Pressure X-ray Photoelectron Spectroscopy

Journal of Physical Chemistry Letters

Zhao, Zihan Z.; Ling, Xiao L.; Chen, Qianli C.; El Gabaly Marquez, Farid E.; Grass, Michael G.; Jabeen, Naila J.; Jones, Deborah J.; Liu, Zhi L.; Mun, Bongjin M.; Braun, Artur B.

Interactions of ceramic proton conductors with the environment under operating conditions play an essential role on material properties and device performance. It remains unclear how the chemical environment of material, as modulated by the operating condition, affects the proton conductivity. Combining near-ambient pressure X-ray photoelectron spectroscopy and impedance spectroscopy, we investigate the chemical environment changes of oxygen and the conductivity of BaZr0.9Y0.1O3-δ under operating condition. Changes in O 1s core level spectra indicate that adding water vapor pressure increases both hydroxyl groups and active proton sites at undercoordinated oxygen. Applying external potential further promotes this hydration effect, in particular, by increasing the amount of undercoordinated oxygen. The enhanced hydration is accompanied by improved proton conductivity. Here, this work highlights the effects of undercoordinated oxygen for improving the proton conductivity in ceramics.

More Details

Development of New Experimental Methods for Correlated Operando Surface/Gas Characterization

Kliewer, Christopher J.; El Gabaly Marquez, Farid E.; Smoll, Eric J.; Chandler, D.W.; Bartelt, Norman C.; Cauduro, Andre C.

The predictive understanding of catalytic surface reactions requires accurate microkinetic models, and while decades of work has been devoted to the elucidation of the reaction steps in these models, many open questions remain. One key issue is a lack of approaches enabling the local spatially resolved assessment of catalytic activity over a surface. In this report, we detail efforts to develop a new diagnostic approach to solve this problem. The approach is based upon laser resonance enhanced multiphoton ionization of reaction products emitted into the gas phase followed by spatially resolved imaging of the resultant ions or electrons. Ion imaging is pursued with a velocity-selected spatially resolved ion imaging microscope, while electron imaging was attempted in a low energy electron microscope. Successful demonstration of the ion imaging microscope coupled with the development of transport simulations shows promise for a revolutionary new tool to assess local catalytic activity

More Details

Stabilized open metal sites in bimetallic metal-organic framework catalysts for hydrogen production from alcohols

Journal of Materials Chemistry A

Snider, Jonathan L.; Su, Ji; Verma, Pragya; El Gabaly Marquez, Farid E.; Sugar, Joshua D.; Chen, Luning; Chames, Jeffery M.; Talin, A.A.; Dun, Chaochao; Urban, Jeffrey J.; Stavila, Vitalie S.; Prendergast, David; Somorjai, Gabor A.; Allendorf, Mark D.

Liquid organic hydrogen carriers such as alcohols and polyols are a high-capacity means of transporting and reversibly storing hydrogen that demands effective catalysts to drive the (de)hydrogenation reactions under mild conditions. We employed a combined theory/experiment approach to develop MOF-74 catalysts for alcohol dehydrogenation and examine the performance of the open metal sites (OMS), which have properties analogous to the active sites in high-performance single-site catalysts and homogeneous catalysts. Methanol dehydrogenation was used as a model reaction system for assessing the performance of five monometallic M-MOF-74 variants (M = Co, Cu, Mg, Mn, Ni). Co-MOF-74 and Ni-MOF-74 give the highest H2 productivity. However, Ni-MOF-74 is unstable under reaction conditions and forms metallic nickel particles. To improve catalyst activity and stability, bimetallic (NixMg1-x)-MOF-74 catalysts were developed that stabilize the Ni OMS and promote the dehydrogenation reaction. An optimal composition exists at (Ni0.32Mg0.68)-MOF-74 that gives the greatest H2 productivity, up to 203 mL gcat-1 min-1 at 300 °C, and maintains 100% selectivity to CO and H2 between 225-275 °C. The optimized catalyst is also active for the dehydrogenation of other alcohols. DFT calculations reveal that synergistic interactions between the open metal site and the organic linker lead to lower reaction barriers in the MOF catalysts compared to the open metal site alone. This work expands the suite of hydrogen-related reactions catalyzed by MOF-74 which includes recent work on hydroformulation and our earlier reports of aryl-ether hydrogenolysis. Moreover, it highlights the use of bimetallic frameworks as an effective strategy for stabilizing a high density of catalytically active open metal sites. This journal is

More Details

Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System

Advanced Materials Interfaces

White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan L.; Wang, Timothy C.; Lee, Jonathan R.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.

Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the utility of these materials has been limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. Better understanding of the mixed-phase mesostructures and their interfaces may assist in improving cyclability. In this work, the evolution of the phases during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride are probed with scanning-transmission X-ray microscopy at the nitrogen K edge. With this technique, intriguing core-shell structures were observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2 LiH. The potential contributions of both internal hydrogen mobility and interfacial energies on the generation of these structures are discussed.

More Details

Role of Surface Oxidation in the Dehydrogenation of Complex Metal Hydrides

White, James L.; Rowberg, Andrew J.; Wan, Liwen F.; Kang, ShinYoung K.; Ogitsu, Tadashi O.; Kolasinski, Robert K.; Whaley, Josh A.; Wang, Timothy C.; Baker, Alexander A.; Lee, Jonathan R.; Liu, Yi-Sheng L.; Guo, Jinghua G.; Stavila, Vitalie S.; Prendergast, David P.; Bluhm, Hendrik B.; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Abstract not provided.

Materials and Hydrogen Isotope Science at Sandia's California Laboratory

Zimmerman, Jonathan A.; Balch, Dorian K.; Bartelt, Norman C.; Buchenauer, D.A.; Catarineu, Noelle R.; Cowgill, D.F.; El Gabaly Marquez, Farid E.; Karnesky, Richard A.; Kolasinski, Robert K.; Medlin, Douglas L.; Robinson, David R.; Ronevich, Joseph A.; Sabisch, Julian E.; San Marchi, Christopher W.; Sills, Ryan B.; Smith, Thale R.; Sugar, Joshua D.; Zhou, Xiaowang Z.

Abstract not provided.

Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH4

Proposed for publication

White, James L.; Rowberg, Andrew J.; Wan, Liwen F.; Kang, ShinYoung K.; Ogitsu, Tadashi O.; Kolasinski, Robert K.; Whaley, Josh A.; Baker, Alexander A.; Lee, Jonathan R.; Liu, Yi-Sheng L.; Trotochaud, Lena T.; Guo, Jinghua G.; Stavila, Vitalie S.; Prendergast, David P.; Bluhm, Hendrik B.; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Abstract not provided.

Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces

Nano Letters

Gittleson, Forrest S.; El Gabaly Marquez, Farid E.

Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode-electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO2-LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to the electrolyte, which reduces reversible cathodic capacity by ∼15%. Inserting a thin, ion-conducting LiNbO3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.

More Details

HyMARC (Sandia) Annual Report

Allendorf, Mark D.; Stavila, Vitalie S.; Klebanoff, Leonard E.; Kolasinski, Robert K.; El Gabaly Marquez, Farid E.; Zhou, Xiaowang Z.; White, James L.

The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

More Details

Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

ACS Applied Materials and Interfaces

Benson, David M.; Tsang, Chu F.; Sugar, Joshua D.; Jagannathan, Kaushik; Robinson, David R.; El Gabaly Marquez, Farid E.; Cappillino, Patrick J.; Stickney, John L.

Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

More Details
Results 1–25 of 78
Results 1–25 of 78