Publications

23 Results

Search results

Jump to search filters

Rapid subsurface analysis of frequency-domain thermoreflectance images with K-means clustering

Journal of Applied Physics

Jarzembski, Amun J.; Piontkowski, Zachary T.; Hodges, Wyatt L.; Bahr, Matthew; McDonald, Anthony E.; Delmas, William; Pickrell, Gregory P.; Yates, Luke Y.

K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μ m of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K = 3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μ m length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.

More Details

Inversion for Thermal Properties with Frequency Domain Thermoreflectance

ACS Applied Materials and Interfaces

Treweek, Benjamin T.; Laros, James H.; Hodges, Wyatt L.; Jarzembski, Amun J.; Bahr, Matthew; Jordan, Matthew J.; McDonald, Anthony E.; Yates, Luke Y.; Walsh, Timothy W.; Pickrell, Gregory P.

3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.

More Details

Demonstration of Acoustically Driven Ferromagnetic Resonance Using Leaky Surface Acoustic Waves in Lithium Tantalate

IEEE International Symposium on Applications of Ferroelectrics, ISAF 2023, International Symposium on Integrated Functionalities, ISIF 2023 and Piezoresponse Force Microscopy Workshop, PFM 2023, Proceedings

Tiwari, Sidhant; Jarzembski, Amun J.; Siddiqui, Aleem M.; Reyna, Robert; Paldi, Robynn-Lynne; Branch, Darren W.

Radio frequency (RF) magnetic devices are key components in RF front ends. However, they are difficult to miniaturize and remain the bulkiest components in RF systems. Acoustically driven ferromagnetic resonance (ADFMR) offers a route towards the miniaturization of RF magnetic devices. The ADFMR literature thus far has focused predominantly on the dynamics of the coupling process, with relatively little work done on the device optimization. In this work, we present an optimized 2 GHz ADFMR device utilizing relaxed SPUDT transducers in lithium tantalate. We report an insertion loss of -13.7 dB and an ADFMR attenuation constant of -71.7 dB/mm, making this device one of the best performing ADFMR devices to date.

More Details

Sensing depths in frequency domain thermoreflectance

Journal of Applied Physics

Hodges, Wyatt L.; Jarzembski, Amun J.; McDonald, Anthony E.; Ziade, Elbara; Pickrell, Gregory P.

A method is developed to calculate the length into a sample to which a Frequency Domain Thermoreflectance (FDTR) measurement is sensitive. Sensing depth and sensing radius are defined as limiting cases for the spherically spreading FDTR measurement. A finite element model for FDTR measurements is developed in COMSOL multiphysics and used to calculate sensing depth and sensing radius for silicon and silicon dioxide samples for a variety of frequencies and laser spot sizes. The model is compared to experimental FDTR measurements. Design recommendations for sample thickness are made for experiments where semi-infinite sample depth is desirable. For measurements using a metal transducer layer, the recommended sample thickness is three thermal penetration depths, as calculated from the lowest measurement frequency.

More Details

Enhancing Graphene Plasmonic Device Performance via its Dielectric Environment

Physical Review Applied

Jarzembski, Amun J.; Goldflam, Michael G.; Siddiqui, Aleem M.; Ruiz, Isaac R.; Laros, James H.

Graphene plasmons provide a compelling avenue toward chip-scale dynamic tuning of infrared light. Dynamic tunability emerges through controlled alterations in the optical properties of the system defining graphene’s plasmonic dispersion. Typically, electrostatic induced alterations of the carrier concentration in graphene working in conjunction with mobility have been considered the primary factors dictating plasmonic tunability. We find here that the surrounding dielectric environment also plays a primary role, dictating not just the energy of the graphene plasmon but so too the magnitude of its tuning and spectral width. To arrive at this conclusion, poles in the imaginary component of the reflection coefficient are used to efficiently survey the effect of the surrounding dielectric on the tuning of the graphene plasmon. By investigating several common polar materials, optical phonons (i.e., the Reststrahlen band) of the dielectric substrate are shown to appreciably affect not only the plasmon’s spectral location but its tunability, and its resonance shape as well. In particular, tunability is maximized when the resonances are spectrally distant from the Reststrahlen band, whereas sharp resonances (i.e., high-Q) are achievable at the band’s edge. Overall, these observations both underscore the necessity of viewing the dielectric environment in aggregate when considering the plasmonic response derived from two-dimensional materials and provide heuristics to design dynamically tunable graphene-based infrared devices.

More Details

Enhancing graphene plasmonic device performance via its dielectric environment

Physical Review Applied

Jarzembski, Amun J.; Goldflam, Michael G.; Siddiqui, Aleem M.; Ruiz, Isaac R.; Laros, James H.

Graphene plasmons provide a compelling avenue toward chip-scale dynamic tuning of infrared light. Dynamic tunability emerges through controlled alterations in the optical properties of the system defining graphene's plasmonic dispersion. Typically, electrostatic induced alterations of the carrier concentration in graphene working in conjunction with mobility have been considered the primary factors dictating plasmonic tunability. We find here that the surrounding dielectric environment also plays a primary role, dictating not just the energy of the graphene plasmon but so too the magnitude of its tuning and spectral width. To arrive at this conclusion, poles in the imaginary component of the reflection coefficient are used to efficiently survey the effect of the surrounding dielectric on the tuning of the graphene plasmon. By investigating several common polar materials, optical phonons (i.e., the Reststrahlen band) of the dielectric substrate are shown to appreciably affect not only the plasmon's spectral location but its tunability, and its resonance shape as well. In particular, tunability is maximized when the resonances are spectrally distant from the Reststrahlen band, whereas sharp resonances (i.e., high-Q) are achievable at the band's edge. These observations both underscore the necessity of viewing the dielectric environment in aggregate when considering the plasmonic response derived from two-dimensional materials and provide heuristics to design dynamically tunable graphene-based infrared devices.

More Details

Experimental exploration of near-field radiative heat transfer

Annual Review of Heat Transfer

Ghashami, Mohammad; Jarzembski, Amun J.; Lim, Mikyung; Lee, Bong J.; Park, Keunhan

This paper presents an in-depth review of ongoing experimental research efforts to fundamentally understand the strong near-field enhancement of radiative heat transfer and make use of the underlying physics for various novel applications. Compared to theoretical studies on near-field radiative heat transfer (NFRHT), its experimental demonstration has not been explored as much until recently due to technical challenges in precision gap control and heat transfer measurement. However, recent advances in micro-/nanofabrication and nanoscale instrumentation/control techniques as well as unprecedented growth in materials science and engineering have created remarkable opportunities to overcome the existing challenges in the measurement and engineering of NFRHT. Beginning with the pioneering works in 1960s, this paper tracks the past and current experimental efforts of NFRHT in three different configurations (i.e., sphere-plane, plane-plane, and tip-plane). In addition, future remarks on how to address current challenges in the experimental research of NFRHT are briefly discussed.

More Details
23 Results
23 Results