Fluid–structure interactions were measured between a representative control surface and the hypersonic flow deflected by it. The control surface is simplified as a spanwise finite ramp placed on a longitudinal slice of a cone. The front surface of the ramp contains a thin panel designed to respond to the unsteady fluid loading arising from the shock-wave/boundary-layer interactions. Experiments were conducted at Mach 5 and Mach 8 with ramps of different angles. High-speed schlieren captured the unsteady flow dynamics and accelerometers behind the thin panel measured its structural response. Panel vibrations were dominated by natural modes that were excited by the broadband aerodynamic fluctuations arising in the flowfield. However, increased structural response was observed in two distinct flow regimes: 1) attached or small separation interactions, where the transitional regime induced the strongest panel fluctuations. This was in agreement with the observation of increased convective undulations or bulges in the separation shock generated by the passage of turbulent spots, and 2) large separated interactions, where shear layer flapping in the laminar regime produced strong panel response at the flapping frequency. In addition, panel heating during the experiment caused a downward shift in its natural mode frequencies.
This work describes the development and testing of a carbon dioxide seeding system for the Sandia Hypersonic Wind Tunnel. The seeder injects liquid carbon dioxide into the tunnel, which evaporates in the nitrogen supply line and then condenses during the nozzle expansion into a fog of particles that scatter light via Rayleigh scattering. A planar laser scattering (PLS) experiment is conducted in the boundary layer and wake of a cone at Mach 8 to evaluate the success of the seeder. Second-mode waves and turbulence transition were well-visualized by the PLS in the boundary layer and wake. PLS in the wake also captured the expansion wave over the base and wake recompression shock. No carbon dioxide appears to survive and condense in the boundary layer or wake, meaning alternative seeding methods must be explored to extract measurements within these regions. The seeding system offers planar flow visualization opportunities and can enable quantitative velocimetry measurements in the future, including filtered Rayleigh scattering.
Measurements are presented of the aero-optic distortion produced by a Mach 8 turbulent boundary layer in the Sandia Hypersonic Wind Tunnel. Flat optical inserts installed in the test section walls enabled a double-pass arrangement of a collimated laser beam. The distortion of this beam was imaged by a high-speed Shack-Hartmann sensor at a sampling rate of up to 1 MHz. Analysis is performed using two processing methods to extract the aero-optic distortion from the data. A novel de-aliasing algorithm is proposed to extract convective-only spectra and is demonstrated to correctly quantify the physical spectra even in case of relatively low sampling rates. The results are compared with an existing theoretical model, and it is shown that this model under-predicts the experimentally measured distortions regardless of the processing method used. Possible explanations for this discrepancy are presented. The presented results represent to-date the highest Mach number for which aero-optic boundary layer distortion measurements are available.
Two techniques have extended the effective frequency limits of postage-stamp PIV, in which a pulse-burst laser and very small fields of view combine to achieve high repetition rates. An interpolation scheme reduced measurement noise, raising the effective frequency response of previous 400-kHz measurements from about 120 kHz to 200 kHz. The other technique increased the PIV acquisition rate to very nearly MHz rates (990 kHz) by using a faster camera. Charge leaked through the camera shift register at these framing rates but this was shown not to bias the measurements. The increased framing rate provided oversampled data and enabled use of multi-frame correlation algorithms for a lower noise floor, increasing the effective frequency response to 240 kHz where the interrogation window size begins to spatially filter the data. Good agreement between the interpolation technique and the MHz-rate PIV measurements was established. The velocity spectra suggest turbulence power-law scaling in the inertial subrange steeper than the theoretical-5/3 scaling, attributed to an absence of isotropy.
Time-resolved particle image velocimetry was conducted at 40 kHz using a pulse-burst laser in the supersonic wake of a wall-mounted hemisphere. Velocity fields suggest a recirculation region with two lobes, in which flow moves away from the wall near the centerline and recirculates back toward the hemisphere off the centerline, contrary to transonic configurations. Spatio-temporal cross-correlations and conditional ensemble averages relate the characteristic behavior of the unsteady shock motion to the flapping of the shear layer. At Mach 1.5, oblique shocks develop, associated with vortical structures in the shear layer and convect downstream in tandem; a weak periodicity is observed. Shock motion at Mach 2.0 appears somewhat different, wherein multiple weak disturbances propagate from shear-layer turbulent structures to form an oblique shock that ripples as these vortices pass by. Bifurcated shock feet coalesce and break apart without evident periodicity. Power spectra show a preferred frequency of shear-layer flapping and shock motion for Mach 1.5, but at Mach 2.0, a weak preferred frequency at the same Strouhal number of 0.32 is found only for oblique shock motion and not shear-layer unsteadiness.
Femtosecond Laser Electronic Excitation Tagging (FLEET) is used to measure velocity flowfields in the wake of a sharp 7◦ half-angle cone in nitrogen at Mach 8, over freestream Reynolds numbers from 4.3∗106 /m to 13.8∗106 /m. Flow tagging reveals expected wake features such as the separation shear layer and two-dimensional velocity components. Frequency-tripled FLEET has a longer lifetime and is more energy efficient by tenfold compared to 800 nm FLEET. Additionally, FLEET lines written with 267 nm are three times longer and 25% thinner than that written with 800 nm at a 1 µs delay. Two gated detection systems are compared. While the PIMAX 3 ICCD offers variable gating and fewer imaging artifacts than a LaVision IRO coupled to a Photron SA-Z, its slow readout speed renders it ineffective for capturing hypersonic velocity fluctuations. FLEET can be detected to 25 µs following excitation within 10 mm downstream of the model base, but delays greater than 4 µs have deteriorated signal-to-noise and line fit uncertainties greater than 10%. In a hypersonic nitrogen flow, exposures of just several hundred nanoseconds are long enough to produce saturated signals and/or increase the line thickness, thereby adding to measurement uncertainty. Velocity calculated between the first two delays offer the lowest uncertainty (less than 3% of the mean velocity).
The development of the unsteady pressure field on the floor of a rectangular cavity was studied at Mach 0.9 using high-frequency pressure-sensitive paint. Power spectral amplitudes at each cavity resonance exhibit a spatial distribution with a streamwise-oscillatory pattern; additional maxima and minima appear as the mode number is increased. This spatial distribution also appears in the propagation velocity of modal pressure disturbances. This behaviour was tied to the superposition of a downstream-propagating shear-layer disturbance and an upstream-propagating acoustic wave of different amplitudes and convection velocities, consistent with the classical Rossiter model. The summation of these waves generates a net downstream-travelling wave whose amplitude and phase velocity are modulated by a fixed envelope within the cavity. This travelling-wave interpretation of the Rossiter model correctly predicts the instantaneous modal pressure behaviour in the cavity. Subtle spanwise variations in the modal pressure behaviour were also observed, which could be attributed to a shift in the resonance pattern as a result of spillage effects at the edges of the finite-width cavity.
Fluid-structure interactions were studies on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Here, under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration.