Chalcogenide thin films that undergo reversible phase changes show promise for use in next-generation nanophotonics, microelectronics, and other emerging technologies. One of the many studied compounds, Ge 2 Sb 2 Te 5 , has demonstrated several useful properties and performance characteristics. However, the efficacy of benchmark Ge 2 Sb 2 Te 5 is restricted by amorphous phase thermal stability below ∼150 °C, limiting its potential use in high-temperature applications. In response, previous studies have added a fourth species (e.g., C) to sputter-deposited Ge 2 Sb 2 Te 5 , demonstrating improved thermal stability. Our current research confirms reported thermal stability enhancements and assesses the effects of carbon on crystalline phase radiation response. Through in situ transmission electron microscope irradiation studies, we examine the effect of C addition on the amorphization behavior of initially cubic and trigonal polycrystalline films irradiated using 2.8 MeV Au to various doses up to 1 × 10 15 cm −2 . It was found that increased C content reduces radiation tolerance of both cubic and trigonal phases.
An in situ ion irradiation scanning electron microscope (I3SEM) has been developed, installed, and integrated into the Ion Beam Laboratory at Sandia National Laboratories. The I3SEM facility combines a field emission, variable pressure, scanning electron microscope, a 6 MV tandem accelerator, high flux low energy ion source, an 808 nm-wavelength laser, and multiple stages to control the thermal and mechanical state of the sample observed. The facility advances real-time understanding of materials evolution under combined environments at the mesoscale. As highlighted in multiple examples, this unique combination of tools is optimized for studying mesoscale material response in overlapping extreme environments, allowing for simultaneous ion irradiation, implantation, laser bombardment, conductive heating, cooling, and mechanical deformation.
There is a need to understand materials exposed to overlapping extreme environments such as high temperature, radiation, or mechanical stress. When these stressors are combined there may be synergistic effects that enable unique microstructural evolution mechanisms to activate. Understanding of these mechanisms is necessary for the input and refinement of predictive models and critical for engineering of next generation materials. The basic physics and underlying mechanisms require advanced tools to be investigated. The in situ ion irradiation transmission electron microscope (I³TEM) is designed to explore these principles. To quantitatively probe the complex dynamic interactions in materials, careful preparation of samples and consideration of experimental design is required. Particular handling or preparation of samples can easily introduce damage or features that obfuscate the measurements. There is no one correct way to prepare a sample; however, many mistakes can be made. The most common errors and things to consider are highlighted within. The I³TEM has many adjustable variables and a large potential experimental space, therefore it is best to design experiments with a specific scientific question or questions in mind. Experiments have been performed on large number of sample geometries, material classes, and with many irradiation conditions. The following are a subset of examples that demonstrate unique in situ capabilities utilizing the I3TEM. Au nanoparticles prepared by drop casting have been used to investigate the effects of single ion strikes. Au thin films have been used in studies on the effects of multibeam irradiation on microstructure evolution. Zr films have been exposed to irradiation and mechanical tension to examine creep. Ag nanopillars were subjected to simultaneous high temperature, mechanical compression, and ion irradiation to study irradiation induced creep as well. These results impact fields including: structural materials, nuclear energy, energy storage, catalysis, and microelectronics in space environments.