Publications

Results 1–25 of 254
Skip to search filters

Selective amorphization of SiGe in Si/SiGe nanostructures via high energy Si+ implant

Journal of Applied Physics

Turner, Emily M.; Campbell, Quinn C.; Avci, Ibrahim A.; Weber, William J.; Lu, Ping L.; Wang, George T.; Jones, Kevin S.

The selective amorphization of SiGe in Si/SiGe nanostructures via a 1 MeV Si + implant was investigated, resulting in single-crystal Si nanowires (NWs) and quantum dots (QDs) encapsulated in amorphous SiGe fins and pillars, respectively. The Si NWs and QDs are formed during high-temperature dry oxidation of single-crystal Si/SiGe heterostructure fins and pillars, during which Ge diffuses along the nanostructure sidewalls and encapsulates the Si layers. The fins and pillars were then subjected to a 3 × 10 15  ions/cm 2 1 MeV Si + implant, resulting in the amorphization of SiGe, while leaving the encapsulated Si crystalline for larger, 65-nm wide NWs and QDs. Interestingly, the 26-nm diameter Si QDs amorphize, while the 28-nm wide NWs remain crystalline during the same high energy ion implant. This result suggests that the Si/SiGe pillars have a lower threshold for Si-induced amorphization compared to their Si/SiGe fin counterparts. However, Monte Carlo simulations of ion implantation into the Si/SiGe nanostructures reveal similar predicted levels of displacements per cm 3 . Molecular dynamics simulations suggest that the total stress magnitude in Si QDs encapsulated in crystalline SiGe is higher than the total stress magnitude in Si NWs, which may lead to greater crystalline instability in the QDs during ion implant. The potential lower amorphization threshold of QDs compared to NWs is of special importance to applications that require robust QD devices in a variety of radiation environments.

More Details

The Diffusion Mechanism of Ge During Oxidation of Si/SiGe Nanofins

ACS Applied Materials and Interfaces

Thornton, Chappel S.; Tuttle, Blair; Turner, Emily; Law, Mark E.; Pantelides, Sokrates T.; Wang, George T.; Jones, Kevin S.

A recently discovered, enhanced Ge diffusion mechanism along the oxidizing interface of Si/SiGe nanostructures has enabled the formation of single-crystal Si nanowires and quantum dots embedded in a defect-free, single-crystal SiGe matrix. Here, we report oxidation studies of Si/SiGe nanofins aimed at gaining a better understanding of this novel diffusion mechanism. A superlattice of alternating Si/Si0.7Ge0.3layers was grown and patterned into fins. After oxidation of the fins, the rate of Ge diffusion down the Si/SiO2interface was measured through the analysis of HAADF-STEM images. The activation energy for the diffusion of Ge down the sidewall was found to be 1.1 eV, which is less than one-quarter of the activation energy previously reported for Ge diffusion in bulk Si. Through a combination of experiments and DFT calculations, we propose that the redistribution of Ge occurs by diffusion along the Si/SiO2interface followed by a reintroduction into substitutional positions in the crystalline Si.

More Details

Fabrication and field emission properties of vertical, tapered GaN nanowires etched via phosphoric acid

Nanotechnology

Kazanowska, Barbara A.; Sapkota, Keshab R.; Lu, Ping L.; Talin, A.A.; Bussmann, Ezra B.; Ohta, Taisuke O.; Gunning, Brendan P.; Jones, Kevin S.; Wang, George T.

The controlled fabrication of vertical, tapered, and high-aspect ratio GaN nanowires via a two-step top-down process consisting of an inductively coupled plasma reactive ion etch followed by a hot, 85% H3PO4 crystallographic wet etch is explored. The vertical nanowires are oriented in the [0001] direction and are bound by sidewalls comprising of 3362 ¯ } semipolar planes which are at a 12° angle from the [0001] axis. High temperature H3PO4 etching between 60 °C and 95 °C result in smooth semipolar faceting with no visible micro-faceting, whereas a 50 °C etch reveals a micro-faceted etch evolution. High-angle annular dark-field scanning transmission electron microscopy imaging confirms nanowire tip dimensions down to 8–12 nanometers. The activation energy associated with the etch process is 0.90 ± 0.09 eV, which is consistent with a reaction-rate limited dissolution process. The exposure of the 3362 ¯ } type planes is consistent with etching barrier index calculations. The field emission properties of the nanowires were investigated via a nanoprobe in a scanning electron microscope as well as by a vacuum field emission electron microscope. The measurements show a gap size dependent turn-on voltage, with a maximum current of 33 nA and turn-on field of 1.92 V nm−1 for a 50 nm gap, and uniform emission across the array.

More Details

The stability of Cl-, Br-, and I-passivated Si(100)-(2 × 1) in ambient environments for atomically-precise pattern preservation

Journal of Physics Condensed Matter

Frederick, Esther F.; Dwyer, K.J.; Wang, George T.; Misra, Shashank M.; Butera, R.E.

Atomic precision advanced manufacturing (APAM) leverages the highly reactive nature of Si dangling bonds relative to H- or Cl-passivated Si to selectively adsorb precursor molecules into lithographically defined areas with sub-nanometer resolution. Due to the high reactivity of dangling bonds, this process is confined to ultra-high vacuum (UHV) environments, which currently limits its commercialization and broad-based appeal. In this work, we explore the use of halogen adatoms to preserve APAM-derived lithographic patterns outside of UHV to enable facile transfer into real-world commercial processes. Specifically, we examine the stability of H-, Cl-, Br-, and I-passivated Si(100) in inert N2 and ambient environments. Characterization with scanning tunneling microscopy and x-ray photoelectron spectroscopy (XPS) confirmed that each of the fully passivated surfaces were resistant to oxidation in 1 atm of N2 for up to 44 h. Varying levels of surface degradation and contamination were observed upon exposure to the laboratory ambient environment. Characterization by ex situ XPS after ambient exposures ranging from 15 min to 8 h indicated the Br– and I–passivated Si surfaces were highly resistant to degradation, while Cl–passivated Si showed signs of oxidation within minutes of ambient exposure. As a proof-of-principle demonstration of pattern preservation, a H–passivated Si sample patterned and passivated with independent Cl, Br, I, and bare Si regions was shown to maintain its integrity in all but the bare Si region post-exposure to an N2 environment. The successful demonstration of the preservation of APAM patterns outside of UHV environments opens new possibilities for transporting atomically-precise devices outside of UHV for integrating with non-UHV processes, such as other chemistries and commercial semiconductor device processes.

More Details

Chemistry of Titanium Deposition Precursors for Area-Selective Deposition of Functionalized Silicon [Posters]

Parker, Tyler P.; Silva-Quinones, Dhamelyn0x S.; Wang, George T.; Teplyakov, Andrew V.

Area-selective atomic layer deposition (AS-ALD) is an appealing bottom-up fabrication technique that can produce atomic-scale device features, overcoming challenges in current industrial techniques such as edge alignment errors. TiCI4 is a common thermal ALD precursor for Ti02 thin films, which are appealing candidates for DRAM capacitors due to their excellent dielectric constants. Hydrogen and chlorine termination passivate the Si surface, allowing for selective deposition of TiCI4 onto HO-terminated areas. However, selectivity loss occurs after several ALD cycles. Ti oxide nucleates onto surface defects on Cl- and H-Si resists. Previously, the use of H-Si as an ALD resist has been studied extensively, but less work has focused on chemical forces driving nucleation, especially for Cl-Si. Here, formation of defect nuclei was investigated with selectivity loss during Ti02 ALD with TiCI4 and water on the (100) and (111) crystal surfaces of hydrogenated, chlorinated, and oxidized Si.

More Details

Controlled Formation of Stacked Si Quantum Dots in Vertical SiGe Nanowires

Nano Letters

Turner, Emily M.; Campbell, Quinn C.; Pizarro, Joaquín; Yang, Hongbin; Sapkota, Keshab R.; Lu, Ping L.; Baczewski, Andrew D.; Wang, George T.; Jones, Kevin S.

We demonstrate the ability to fabricate vertically stacked Si quantum dots (QDs) within SiGe nanowires with QD diameters down to 2 nm. These QDs are formed during high-temperature dry oxidation of Si/SiGe heterostructure pillars, during which Ge diffuses along the pillars' sidewalls and encapsulates the Si layers. Continued oxidation results in QDs with sizes dependent on oxidation time. The formation of a Ge-rich shell that encapsulates the Si QDs is observed, a configuration which is confirmed to be thermodynamically favorable with molecular dynamics and density functional theory. The type-II band alignment of the Si dot/SiGe pillar suggests that charge trapping on the Si QDs is possible, and electron energy loss spectra show that a conduction band offset of at least 200 meV is maintained for even the smallest Si QDs. Our approach is compatible with current Si-based manufacturing processes, offering a new avenue for realizing Si QD devices.

More Details

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin Y.

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert E.; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther F.; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan W.; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

Solution Chemistry to Control Boron-Containing Monolayers on Silicon: Reactions of Boric Acid and 4-Fluorophenylboronic Acid with H- And Cl-terminated Si(100)

Langmuir

Silva-Quinones, Dhamelyz; Butera, Robert E.; Wang, George T.; Teplyakov, Andrew V.

The reactions of boric acid and 4-fluorophenylboronic acid with H- and Cl-terminated Si(100) surfaces in solution were investigated. X-ray photoelectron spectroscopy (XPS) studies reveal that both molecules react preferentially with Cl-Si(100) and not with H-Si(100) at identical conditions. On Cl-Si(100), the reactions introduce boron onto the surface, forming a Si-O-B structure. The quantification of boron surface coverage demonstrates that the 4-fluorophenylboronic acid leads to ∼2.8 times higher boron coverage compared to that of boric acid on Cl-Si(100). Consistent with these observations, density functional theory studies show that the reaction of boric acid and 4-fluorophenylboronic acid is more favorable with the Cl- versus H-terminated surface and that on Cl-Si(100) the reaction with 4-fluorophenylboronic acid is ∼55.3 kJ/mol more thermodynamically favorable than the reaction with boric acid. The computational studies were also used to demonstrate the propensity of the overall approach to form high-coverage monolayers on these surfaces, with implications for selective-area boron-based monolayer doping.

More Details

AlCl3-Dosed Si(100)-2 × 1: Adsorbates, Chlorinated Al Chains, and Incorporated Al

Journal of Physical Chemistry C

Radue, Matthew S.; Baek, Sungha; Farzaneh, Azadeh; Dwyer, K.J.; Campbell, Quinn C.; Baczewski, Andrew D.; Bussmann, Ezra B.; Wang, George T.; Mo, Yifei; Misra, Shashank M.; Butera, R.E.

The adsorption of AlCl3 on Si(100) and the effect of annealing the AlCl3-dosed substrate were studied to reveal key surface processes for the development of atomic-precision, acceptor-doping techniques. This investigation was performed via scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. At room temperature, AlCl3 readily adsorbed to the Si substrate dimers and dissociated to form a variety of species. Annealing the AlCl3-dosed substrate at temperatures below 450 °C produced unique chlorinated aluminum chains (CACs) elongated along the Si(100) dimer row direction. An atomic model for the chains is proposed with supporting DFT calculations. Al was incorporated into the Si substrate upon annealing at 450 °C and above, and Cl desorption was observed for temperatures beyond 450 °C. Al-incorporated samples were encapsulated in Si and characterized by secondary ion mass spectrometry (SIMS) depth profiling to quantify the Al atom concentration, which was found to be in excess of 1020 cm-3 across a ∼2.7 nm-thick δ-doped region. The Al concentration achieved here and the processing parameters utilized promote AlCl3 as a viable gaseous precursor for novel acceptor-doped Si materials and devices for quantum computing.

More Details

Ultralow Voltage GaN Vacuum Nanodiodes in Air

Nano Letters

Sapkota, Keshab R.; Leonard, Francois L.; Talin, A.A.; Gunning, Brendan P.; Kazanowska, Barbara A.; Jones, Kevin S.; Wang, George T.

The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.

More Details

Nonvolatile voltage controlled molecular spin‐state switching for memory applications

Magnetochemistry

Ekanayaka, Thilini K.; Hao, Guanhua; Mosey, Aaron; Dale, Ashley S.; Jiang, Xuanyuan; Yost, Andrew J.; Sapkota, Keshab R.; Wang, George T.; Zhang, Jian; N’Diaye, Alpha T.; Marshall, Andrew; Cheng, Ruihua; Naeemi, Azad; Xu, Xiaoshan; Dowben, Peter A.

Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid‐state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol‐1‐yl)‐borohydride and bipy = 2,2′‐bipyridine, voltage‐controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low‐cost molecular solid‐state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.

More Details
Results 1–25 of 254
Results 1–25 of 254