Fogs, low lying clouds, and other highly scattering environments pose a challenge for many commercial and national security sensing systems. Current autonomous systems rely on optical sensors for navigation whose performance is degraded by highly scattering environments. In our previous simulation work, we have shown that polarized light can penetrate through a scattering environment such as fog. We have demonstrated that circularly polarized light maintains its initial polarization state better than linearly polarized light, even through large numbers of scattering events and thus ranges. This has recently been experimentally verified by other researchers. In this work, we present the design, construction, and testing of active polarization imagers at short-wave infrared and visible wavelengths. We explore multiple polarimetric configurations for the imagers, focusing on linear and circular polarization states. The polarized imagers were tested at the Sandia National Laboratories Fog Chamber under realistic fog conditions. We show that active circular polarization imagers can increase range and contrast in fog better than linear polarization imagers. We show that when imaging typical road sign and safety retro-reflective films, circularly polarized imaging has enhanced contrast throughout most fog densities/ranges compared to linearly polarized imaging and can penetrate over 15 to 25 m into the fog beyond the range limit of linearly polarized imaging, with a strong dependence on the interaction of the polarization state with the target materials.
Two surface chemical explosive tests were observed for the Large Surface Explosion Coupling Experiment (LSECE) at the Nevada National Security Site in October 2020. The tests consisted of two one-ton explosions, one occurring before dawn and one occurring mid- afternoon. LSECE was performed in the same location as previous underground tests and aimed to explore the relationship between surface and underground explosions in support of global nonproliferation efforts. Several pieces of remote sensing equipment were deployed from a trailer 2.02 km from ground zero including high-speed cameras, radiometers and a spectrometer. The data collected from these tests will increase the knowledge of large surface chemical explosive signatures.