The current present in a galvanic couple can define its resistance or susceptibility to corrosion. However, as the current is dependent upon environmental, material, and geometrical parameters it is experimentally costly to measure. To reduce these costs, Finite Element (FE) simulations can be used to assess the cathodic current but also require experimental inputs to define boundary conditions. Due to these challenges, it is crucial to accelerate predictions and accurately predict the current output for different environments and geometries representative of in-service conditions. Machine learned surrogate models provides a means to accelerate corrosion predictions. However, a one-time cost is incurred in procuring the simulation and experimental dataset necessary to calibrate the surrogate model. Therefore, an active learning protocol is developed through calibration of a low-cost surrogate model for the cathodic current of an exemplar galvanic couple (AA7075-SS304) as a function of environmental and geometric parameters. The surrogate model is calibrated on a dataset of FE simulations, and calculates an acquisition function that identifies specific additional inputs with the maximum potential to improve the current predictions. This is accomplished through a staggered workflow that not only improves and refines prediction, but identifies the points at which the most information is gained, thus enabling expansion to a larger parameter space. The protocols developed and demonstrated in this work provide a powerful tool for screening various forms of corrosion under in-service conditions.
Thermal spray deposition is an inherently stochastic manufacturing process used for generating thick coatings of metals, ceramics and composites. The generated coatings exhibit hierarchically complex internal structures that affect the overall properties of the coating. The deposition process can be adequately simulated using rules-based process simulations. Nevertheless, in order for the simulation to accurately model particle spreading upon deposition, a set of predefined rules and parameters need to be calibrated to the specific material and processing conditions of interest. The calibration process is not trivial given the fact that many parameters do not correspond directly to experimentally measurable quantities. This work presents a protocol that automatically calibrates the parameters and rules of a given simulation in order to generate the synthetic microstructures with the closest statistics to an experimentally generated coating. Specifically, this work developed a protocol for tantalum coatings prepared using air plasma spray. The protocol starts by quantifying the internal structure using 2-point statistics and then representing it in a low-dimensional space using Principal Component Analysis. Subsequently, our protocol leverages Bayesian optimization to determine the parameters that yield the minimum distance between synthetic microstructure and the experimental coating in the low-dimensional space.
Highlights Novel protocol for extracting knowledge from previously performed Finite Element corrosion simulations using machine learning. Obtain accurate predictions for corrosion current 5 orders of magnitude faster than Finite Element simulations. Accurate machine learning based model capable of performing an effective and efficient search over the multi-dimensional input space to identify areas/zones where corrosion is more (or less) noticeable.
The finite element method (FEM) is widely used to simulate a variety of physics phenomena. Approaches that integrate FEM with neural networks (NNs) are typically leveraged as an alternative to conducting expensive FEM simulations in order to reduce the computational cost without significantly sacrificing accuracy. However, these methods can produce biased predictions that deviate from those obtained with FEM, since these hybrid FEM-NN approaches rely on approximations trained using physically relevant quantities. In this work, an uncertainty estimation framework is introduced that leverages ensembles of Bayesian neural networks to produce diverse sets of predictions using a hybrid FEM-NN approach that approximates internal forces on a deforming solid body. The uncertainty estimator developed herein reliably infers upper bounds of bias/variance in the predictions for a wide range of interpolation and extrapolation cases using a three-element FEM-NN model of a bar undergoing plastic deformation. This proposed framework offers a powerful tool for assessing the reliability of physics-based surrogate models by establishing uncertainty estimates for predictions spanning a wide range of possible load cases.
Uncertainty quantification (UQ) plays a critical role in verifying and validating forward integrated computational materials engineering (ICME) models. Among numerous ICME models, the crystal plasticity finite element method (CPFEM) is a powerful tool that enables one to assess microstructure-sensitive behaviors and thus, bridge material structure to performance. Nevertheless, given its nature of constitutive model form and the randomness of microstructures, CPFEM is exposed to both aleatory uncertainty (microstructural variability), as well as epistemic uncertainty (parametric and model-form error). Therefore, the observations are often corrupted by the microstructure-induced uncertainty, as well as the ICME approximation and numerical errors. In this work, we highlight several ongoing research topics in UQ, optimization, and machine learning applications for CPFEM to efficiently solve forward and inverse problems. The first aspect of this work addresses the UQ of constitutive models for epistemic uncertainty, including both phenomenological and dislocation-density-based constitutive models, where the quantities of interest (QoIs) are related to the initial yield behaviors. We apply a stochastic collocation (SC) method to quantify the uncertainty of the three most commonly used constitutive models in CPFEM, namely phenomenological models (with and without twinning), and dislocation-density-based constitutive models, for three different types of crystal structures, namely face-centered cubic (fcc) copper (Cu), body-centered cubic (bcc) tungsten (W), and hexagonal close packing (hcp) magnesium (Mg). The second aspect of this work addresses the aleatory and epistemic uncertainty with multiple mesh resolutions and multiple constitutive models by the multi-index Monte Carlo method, where the QoI is also related to homogenized materials properties. We present a unified approach that accounts for various fidelity parameters, such as mesh resolutions, integration time-steps, and constitutive models simultaneously. We illustrate how multilevel sampling methods, such as multilevel Monte Carlo (MLMC) and multi-index Monte Carlo (MIMC), can be applied to assess the impact of variations in the microstructure of polycrystalline materials on the predictions of macroscopic mechanical properties. The third aspect of this work addresses the crystallographic texture study of a single void in a cube. Using a parametric reduced-order model (also known as parametric proper orthogonal decomposition) with a global orthonormal basis as a model reduction technique, we demonstrate that the localized dynamic stress and strain fields can be predicted as a spatiotemporal problem.
Advances in machine learning (ML) have enabled the development of interatomic potentials that promise the accuracy of first principles methods and the low-cost, parallel efficiency of empirical potentials. However, ML-based potentials struggle to achieve transferability, i.e., provide consistent accuracy across configurations that differ from those used during training. In order to realize the promise of ML-based potentials, systematic and scalable approaches to generate diverse training sets need to be developed. This work creates a diverse training set for tungsten in an automated manner using an entropy optimization approach. Subsequently, multiple polynomial and neural network potentials are trained on the entropy-optimized dataset. A corresponding set of potentials are trained on an expert-curated dataset for tungsten for comparison. The models trained to the entropy-optimized data exhibited superior transferability compared to the expert-curated models. Furthermore, the models trained to the expert-curated set exhibited a significant decrease in performance when evaluated on out-of-sample configurations.
This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.