Publications

2 Results
Skip to search filters

Signal-Based Fast Tripping Protection Schemes for Electric Power Distribution System Resilience

Reno, Matthew J.; Jimenez Aparicio, Miguel J.; Wilches-Bernal, Felipe W.; Hernandez Alvidrez, Javier H.; Montoya, Armando Y.; Barba, Pedro; Flicker, Jack D.; Dow, Andrew R.; Bidram, Ali B.; Paruthiyil, Sajay P.; Montoya, Rudy A.; Poudel, Binod P.; Reimer, Benjamin R.; Lavrova, Olga L.; Biswal, Milan B.; Miyagishima, Frank M.; Carr, Christopher L.; Pati, Shubhasmita P.; Ranade, Satish J.; Grijalva, Santiago G.; Paul, Shuva P.

This report is a summary of a 3-year LDRD project that developed novel methods to detect faults in the electric power grid dramatically faster than today’s protection systems. Accurately detecting and quickly removing electrical faults is imperative for power system resilience and national security to minimize impacts to defense critical infrastructure. The new protection schemes will improve grid stability during disturbances and allow additional integration of renewable energy technologies with low inertia and low fault currents. Signal-based fast tripping schemes were developed that use the physics of the grid and do not rely on communication to reduce cyber risks for safely removing faults.

More Details

A Survey of Traveling Wave Protection Schemes in Electric Power Systems

IEEE Access

Wilches-Bernal, Felipe; Bidram, Ali; Reno, Matthew J.; Hernandez Alvidrez, Javier H.; Barba, Pedro; Reimer, Benjamin; Montoya, Rudy; Carr, Christopher C.; Lavrova, Olga A.

As a result of the increase in penetration of inverter-based generation such as wind and solar, the dynamics of the grid are being modified. These modifications may threaten the stability of the power system since the dynamics of these devices are completely different from those of rotating generators. Protection schemes need to evolve with the changes in the grid to successfully deliver their objectives of maintaining safe and reliable grid operations. This paper explores the theory of traveling waves and how they can be used to enable fast protection mechanisms. It surveys a list of signal processing methods to extract information on power system signals following a disturbance. The paper also presents a literature review of traveling wave-based protection methods at the transmission and distribution levels of the grid and for AC and DC configurations. The paper then discusses simulations tools to help design and implement protection schemes. A discussion of the anticipated evolution of protection mechanisms with the challenges facing the grid is also presented.

More Details
2 Results
2 Results