Publications

7 Results

Search results

Jump to search filters

A data-driven multiscale model for reactive wetting simulations

Computers and Fluids

Horner, Jeffrey S.; Winter, Ian; Kemmenoe, David J.; Arata, Edward R.; Chandross, M.; Roberts, Scott A.; Grillet, Anne M.

We describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop's composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material's wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.

More Details

DEVELOPMENT OF DIFFUSION BONDED IMPACTORS FOR RELIABLE SHOCK-RESHOCK EXPERIMENTS

Proceedings of the 16th Hypervelocity Impact Symposium, HVIS 2022

Specht, Paul E.; Johnson, Christopher; Arata, Edward R.

Diffusion bonding of two immiscible, binary metallic systems, Cu-Ta and Cu-W was employed to make repeatable and predictable dual-layer impactors for shock-reshock experiments. The diffusion bonded impactors were characterized using ultrasonic imaging and optical microscopy to ensure bonding and the absence of excessive Cu grain coarsening. The diffusion bonded impactors were launched via a two-stage gas gun at [100] LiF windows instrumented with multiple interferometry probes spanning nearly the entire impactor area. Consistent interferometry data was obtained from all experiments with no evidence of release prior to recompression, indicating a uniform bond. Comparisons to hydrocode simulations show excellent agreement for all experiments, facilitating easy application of these impactors to future experiments.

More Details

Processing, structure, and thermal properties of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Laros, James H.; Salinas, Perla A.; Coker, Eric N.; Arata, Edward R.; Rodriguez, Mark A.; Murray, Shannon E.; Mahaffey, Jacob T.; Biedermann, Laura B.

Negative and zero coefficient of thermal expansion (CTE) materials are of interest for developing polymer composites in electronic circuits that match the expansion of Si and in zero CTE supports for optical components, e.g., mirrors. In this work, the processing challenges and stability of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics are discussed. Al0.5Sc1.5W3O12 is demonstrated to be a relatively simple oxide to fabricate in large quantity and is shown to exhibit single phase up to 1300 °C in air and inert N2 environments. The negative and zero CTE behavior was confirmed with dilatometry. Thermal conductivity and heat capacity were reported for the first time for HfMgW3O12 and Al0.5Sc1.5W3O12 and thermal conductivity was found to be very low (~0.5 W/mK). Grüneisen parameter is also estimated. Methods for integration of Al0.5Sc1.5W3O12 with other materials was examined and embedding 50 vol% of the ceramic powder in flexible epoxy was demonstrated with a commercial vendor.

More Details
7 Results
7 Results