Publications

10 Results

Search results

Jump to search filters

Equipment Testing Environment (ETE) Specification

Hahn, Andrew S.; Rowland, Michael T.; Karch, Benjamin K.; Bruneau, Robert J.; Valme, Romuald V.

Cyber security has been difficult to quantify from the perspective of defenders. The effort to develop a cyber-attack with some ability, function, or consequence has not been rigorously investigated in Operational Technologies. This specification defines a testing structure that allows conformal and repeatable cyber testing on equipment. The purpose of the ETE is to provide data necessary to analyze and reconstruct cyber-attack timelines, effects, and observables for training and development of Cyber Security Operation Centers. Standardizing the manner in which cyber security on equipment is investigated will allow a greater understanding of the progression of cyber attacks and potential mitigation and detection strategies in a scientifically rigorous fashion.

More Details

Equipment Testing Environment (ETE) Process Specification

Hahn, Andrew S.; Karch, Benjamin K.; Bruneau, Robert J.; Rowland, Michael T.; Valme, Romuald V.

This document is intended to be utilized with the Equipment Test Environment being developed to provide a standard process by which the ETE can be validated. The ETE is developed with the intent of establishing cyber intrusion, data collection and through automation provide objective goals that provide repeatability. This testing process is being developed to interface with the Technical Area V physical protection system. The document will overview the testing structure, interfaces, device and network logging and data capture. Additionally, it will cover the testing procedure, criteria and constraints necessary to properly capture data and logs and record them for experimental data capture and analysis.

More Details

Investigating cyber threats in a nuclear power plant

Chemical Engineering Transactions

Adams, Susan S.; Murchison, Nicole M.; Bruneau, Robert J.

Malicious cyber-attacks are becoming increasingly prominent due to the advance of technology and attack methods over the last decade. These attacks have the potential to bring down critical infrastructures, such as nuclear power plants (NPP’s), which are so vital to the country that their incapacitation would have debilitating effects on national security, public health, or safety. Despite the devastating effects a cyber-attack could have on NPP’s, it is unclear how control room operations would be affected in such a situation. In this project, the authors are collaborating with NPP operators to discern the impact of cyber-attacks on control room operations and lay out a framework to better understand the control room operators’ tasks and decision points. A cyber emulation of a digital control system was developed and coupled with a generic pressurized water reactor (GPWR) training simulator at Idaho National Laboratories. Licensed operators were asked to complete a series of scenarios on the simulator in which some of the scenarios were purposely obfuscated; that is, in which indicators were purposely displaying inaccurate information. Of interest is how this obfuscation impacts the ability to keep the plant safe and how it affects operators’ perceptions of workload and performance. Results, conclusions and lessons learned from this pilot experiment will be discussed. This research sheds light onto about how cyber events impact plant operations.

More Details

Enhancing Power Plant Safety through Coupling Plant Simulators to Cyber Digital Architecture

Adams, Susan S.; Bruneau, Robert J.; Jacobs, Nicholas J.; Murchison, Nicole M.; Sandoval, Daniel R.; Seng, Bibiana E.

There are differences in how cyber-attack, sabotage, or discrete component failure mechanisms manifest within power plants and what these events would look like within the control room from an operator's perspective. This research focuses on understanding how a cyber event would affect the operation of the plant, how an operator would perceive the event, and if the operator's actions based on those perceptions will allow him/her to maintain plant safety. This research is funded as part of Sandia's Laboratory Directed Research and Development (LDRD) program to develop scenarios with cyber induced failure of plant systems coupled with a generic pressurized water reactor plant training simulator. The cyber scenario s w ere developed separately and injected into the simulator operational state to simulate an attack. These scenarios will determine if Nuclear Power Plant (NPP) operators can 1) recognize that the control room indicators were presenting incorrect or erroneous information and 2) take appropriate actions to keep the plant safe. This will also provide the opportunity to assess the operator cognitive workload during such events and identify where improvements might be made. This paper will review results of a pilot study run with NPP operators to investigate performance under various cyber scenarios. The discussion will provide an overview of the approach, scenario selection, metrics captured, resulting insights into operator actions and plant response to multiple scenarios of the NPP system.

More Details
10 Results
10 Results