Publications

Results 1–25 of 64

Search results

Jump to search filters

Assessing decision boundaries under uncertainty

Structural and Multidisciplinary Optimization

Desmond, Jacob; Walsh, Timothy; Mccormick, Cameron; Smith, Chandler; Kurzawski, John C.; Sanders, Clay; Eldred, Michael; Aquino, Wilkins

In order to make design decisions, engineers may seek to identify regions of the design domain that are acceptable in a computationally efficient manner. A design is typically considered acceptable if its reliability with respect to parametric uncertainty exceeds the designer’s desired level of confidence. Despite major advancements in reliability estimation and in design classification via decision boundary estimation, the current literature still lacks a design classification strategy that incorporates parametric uncertainty and desired design confidence. To address this gap, this works offers a novel interpretation of the acceptance region by defining the decision boundary as the hypersurface which isolates the designs that exceed a user-defined level of confidence given parametric uncertainty. This work addresses the construction of this novel decision boundary using computationally efficient algorithms that were developed for reliability analysis and decision boundary estimation. The proposed approach is verified on two physical examples from structural and thermal analysis using Support Vector Machines and Efficient Global Optimization-based contour estimation.

More Details

An investigation into the effects of state of charge and heating rate on propagating thermal runaway in Li-ion batteries with experiments and simulations

Fire Safety Journal

Kurzawski, John C.; Gray, Lucas; Torres-Castro, Loraine; Hewson, John C.

As large systems of Li-ion batteries are being increasingly deployed, the safety of such systems must be assessed. Due to the high cost of testing large systems, it is important to extract key safety information from any available experiments. Developing validated predictive models that can be exercised at larger scales offers an opportunity to augment experimental data In this work, experiments were conducted on packs of three Li-ion pouch cells with different heating rates and states of charge (SOC) to assess the propagation behavior of a module undergoing thermal runaway. The variable heating rates represent slow or fast heating that a module may experience in a system. As the SOC decreases, propagation slows down and eventually becomes mitigated. It was found that the SOC boundary between propagation and mitigation was higher at a heating rate of 50 °C/min than at 10 °C/min for these cells. However, due to increased pre-heating at the lower heating rate, the propagation speed increased. Simulations were conducted with a new intra-particle diffusion-limited reaction model for a range of anode particle sizes. Propagation speeds and onset times were generally well predicted, and the variability in the propagation/mitigation boundary highlighted the need for greater uncertainty quantification of the predictions.

More Details

Support Vector Machines for Estimating Decision Boundaries with Numerical Simulations

Walsh, Timothy; Aquino, Wilkins; Kurzawski, John C.; Mccormick, Cameron; Sanders, Clay; Smith, Chandler; Treweek, Benjamin

Many engineering design problems can be formulated as decisions between two possible options. This is the case, for example, when a quantity of interest must be maintained below or above some threshold. The threshold thereby determines which input parameters lead to which option, and creates a boundary between the two options known as the decision boundary. This report details a machine learning approach for estimating decision boundaries, based on support vector machines (SVMs), that is amenable to large scale computational simulations. Because it is computationally expensive to evaluate each training sample, the approach iteratively estimates the decision boundary in a manner that requires relatively few training samples to glean useful estimates. The approach is then demonstrated on three example problems from structural mechanics and heat transport.

More Details

Inverse Methods - Users Manual 5.6

Walsh, Timothy; Akcelik, Volkan; Aquino, Wilkins; Mccormick, Cameron; Sanders, Clay; Treweek, Benjamin; Kurzawski, John C.; Smith, Chandler

The inverse methods team provides a set of tools for solving inverse problems in structural dynamics and thermal physics, and also sensor placement optimization via Optimal Experimental Design (OED). These methods are used for designing experiments, model calibration, and verfication/validation analysis of weapons systems. This document provides a user's guide to the input for the three apps that are supported for these methods. Details of input specifications, output options, and optimization parameters are included.

More Details
Results 1–25 of 64
Results 1–25 of 64