Publications

Publications / SAND Report

Computational Analysis of Coupled Geoscience Processes in Fractured and Deformable Media

Yoon, Hongkyu Y.; Kucala, Alec K.; Chang, Kyung W.; Martinez, Mario J.; Bean, James B.; Kadeethum, T.; Warren, Maria W.; Wilson, Jennifer E.; Broome, Scott T.; Stewart, Lauren S.; Estrada, Diana E.; Bouklas, Nicholas B.; Fuhg, Jan N.

Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.