Publications

Results 1–25 of 63
Skip to search filters

Mini-DAQ: A lightweight, low-cost, high resolution, data acquisition system for wave energy converter testing

HardwareX

Bosma, Bret; Coe, Ryan; Bacelli, Giorgio B.; Brekken, Ted; Gunawan, Budi G.

As part of the development process, scaled testing of wave energy converter devices are necessary to prove a concept, study hydrodynamics, and validate control system approaches. Creating a low-cost, small, lightweight data acquisition system suitable for scaled testing is often a barrier for wave energy converter developers’ ability to test such devices. This paper outlines an open-source solution to these issues, which can be customized based on specific needs. This will help developers with limited resources along a path toward commercialization.

More Details

The Marine and Hydrokinetic ToolKit (MHKiT) for Data Quality Control and Analysis [Slides]

Olson, Sterling S.; Fao, Rebecca F.; Coe, Ryan G.; Ruehl, Kelley M.; Driscoll, Frederick D.; Gunawan, Budi G.; Lansing, Carina L.; Ivanov , Hristo I.

The ability to collect, ingest, condition, reduce, quality control, process, visualize, and store data in a standardized way is critical at all stages of Marine Energy (ME) research and technology/project development. MHKiT is an open-source, standardized suite of ME data processing functions that provides the ability to ingest, condition, reduce, quality control, process, visualize and store ME data. MHKiT is developed in both Python and Matlab.

More Details

WEC array networked microgrid control design and energy storage system requirements

OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019

Weaver, Wayne W.; Hagmuller, Alex; Ginsburg, Max; Wilson, David G.; Bacelli, Giorgio B.; Robinett, Rush D.; Coe, Ryan; Gunawan, Budi G.

Wave Energy Converter (WEC) technologies transform power from the waves to the electrical grid. WEC system components are investigated that support the performance, stability, and efficiency as part of a WEC array. To this end, Aquaharmonics Inc took home the 1.5 million grand prize in the 2016 U.S. Department of Energy Wave Energy Prize, an 18-month design-build-test competition to increase the energy capture potential of wave energy devices. Aquaharmonics intends to develop, build, and perform open ocean testing on a 1: 7 scale device. Preliminary wave tank testing on the mechanical system of the 1: 20 scale device has yielded a data-set of operational conditions and performance. In this paper, the Hamiltonian surface shaping and power flow control (HSSPFC) method is used in conjunction with scaled wave tank test data to explore the design space for the electrical transmission of energy to the shore-side power grid. Of primary interest is the energy storage system (ESS) that will electrically link the WEC to the shore. Initial analysis results contained in this paper provide a trade-off in storage device performance and design selection.

More Details
Results 1–25 of 63
Results 1–25 of 63