Publications

8 Results

Search results

Jump to search filters

Extinction Imaging Diagnostics for In Situ Quantification of Soot within Explosively Generated Fireballs

Propellants, Explosives, Pyrotechnics

Saltzman, Ashley J.; Brown, Alex; Wan, Kevin W.; Manin, Julien L.; Pickett, Lyle M.; Welliver, Marc W.; Guildenbecher, Daniel R.

Fireballs produced from the detonation of high explosives often contain particulates primarily composed of various phases of carbon soot. The transport and concentration of these particulates is of interest for model validation and emission characterization. This work proposes ultra-high-speed imaging techniques to observe a fireball's structure and optical depth. An extinction-based diagnostic applied at two wavelengths indicates that extinction scales inversely with wavelength, consistent with particles in the Rayleigh limit and dimensionless extinction coefficients which are independent of wavelength. Within current confidence bounds, the extinction-derived soot mass concentrations agree with expectations based upon literature reported soot yields. Results also identify areas of high uncertainty where additional work is recommended.

More Details

The role of cool-flame fluctuations in high-pressure spray flames, studied using high-speed optical diagnostics and Large-Eddy Simulations

Proceedings of the Combustion Institute

Tagliante, Fabien; Nguyen, Tuan M.; Dhanji, Meghnaa; Sim, Hyung S.; Pickett, Lyle M.; Manin, Julien L.; Kukkadapu, Goutham; Whitesides, Russell; Wan, Kevin W.

This work investigates the low- and high-temperature ignition and combustion processes, applied to the Engine Combustion Network Spray A flame, combining advanced optical diagnostics and large-eddy simulations (LES). Simultaneous high-speed (50 kHz) formaldehyde (CH2O) planar laser-induced fluorescence (PLIF) and line-of-sight OH* chemiluminescence imaging were used to measure the low- and high-temperature flame, during ignition as well as during quasi-steady combustion. While tracking the cool flame at the laser sheet plane, the present experimental setup allows detection of distinct ignition spots and dynamic fluctuations of the lift-off length over time, which overcomes limitations for flame tracking when using schlieren imaging [Sim et al.Proc. Combust. Inst. 38 (4) (2021) 5713–5721]. After significant development to improve LES prediction of the low-and high-temperature flame position, both during the ignition processes and quasi-steady combustion, the simulations were analyzed to gain understanding of the mixture variance and how this variance affects formation/consumption of CH2O. Analysis of the high-temperature ignition period shows that a key improvement in the LES is the ability to predict heterogeneous ignition sites, not only in the head of the jet, but in shear layers at the jet edge close to the position where flame lift-off eventually stabilizes. The LES analysis also shows concentrated pockets of CH2O, in the center of jet and at 20 mm downstream of the injector (in regions where the equivalence ratio is greater than 6), that are of similar length scale and frequency as the experiment (approximately 5–6 kHz). The periodic oscillation of CH2O match the frequency of pressure waves generated during auto-ignition and reflected within the constant-volume vessel throughout injection. The ability of LES to capture the periodic appearance and destruction of CH2O is particularly important because these structures travel downstream and become rich premixed flames that affect soot production.

More Details

Numerical and Experimental Investigations on the Ignition Behavior of OME

Energies

Wiesmann, Frederik; Strauss, Lukas; Riess, Sebastian; Manin, Julien L.; Wan, Kevin W.; Lauer, Thomas

On the path towards climate-neutral future mobility, the usage of synthetic fuels derived from renewable power sources, so-called e-fuels, will be necessary. Oxygenated e-fuels, which contain oxygen in their chemical structure, not only have the potential to realize a climate-neutral powertrain, but also to burn more cleanly in terms of soot formation. Polyoxymethylene dimethyl ethers (PODE or OMEs) are a frequently discussed representative of such combustibles. However, to operate compression ignition engines with these fuels achieving maximum efficiency and minimum emissions, the physical-chemical behavior of OMEs needs to be understood and quantified. Especially the detailed characterization of physical and chemical properties of the spray is of utmost importance for the optimization of the injection and the mixture formation process. The presented work aimed to develop a comprehensive CFD model to specify the differences between OMEs and dodecane, which served as a reference diesel-like fuel, with regards to spray atomization, mixing and auto-ignition for single- and multi-injection patterns. The simulation results were validated against experimental data from a high-temperature and high-pressure combustion vessel. The sprays’ liquid and vapor phase penetration were measured with Mie-scattering and schlieren-imaging as well as diffuse back illumination and Rayleigh-scattering for both fuels. To characterize the ignition process and the flame propagation, measurements of the OH* chemiluminescence of the flame were carried out. Significant differences in the ignition behavior between OMEs and dodecane could be identified in both experiments and CFD simulations. Liquid penetration as well as flame lift-off length are shown to be consistently longer for OMEs. Zones of high reaction activity differ substantially for the two fuels: Along the spray center axis for OMEs and at the shear boundary layers of fuel and ambient air for dodecane. Additionally, the transient behavior of high temperature reactions for OME is predicted to be much faster.

More Details

Soot and PAH formation in high pressure spray pyrolysis of gasoline and diesel fuels

Combustion and Flame

Wan, Kevin W.; Manin, Julien L.; Sim, Hyung S.; Karathanassis, Ioannis

Time-resolved soot and PAH formation from gasoline and diesel spray pyrolysis are visualized and quantified using diffuse back illumination (DBI) and laser induced fluorescence (LIF) at 355 nm, respectively, in a constant-volume vessel at 60 bar from 1400 to 1700 K for up to 30 ms. The delay, maximum formation rate, and yield of soot and PAHs are compared across fuels and temperatures and correlated with the yield sooting indices on either the mass or mole basis. The delays generally decrease with increasing temperature, and the formation rates of both PAHs and soot generally increase with temperature. The apparent PAH-LIF yield may decrease with temperature due to PAH growth and conversion into larger species, signal trapping, and thermal quneching. Soot yield generally increases with temperature. The mass-based YSI correlates reasonably well with soot delay, but YSI does not correlate well with soot yield. The mass-based YSI is a more appropriate predictor of sooting propensity than the mole-based YSI.

More Details

Toward Quantitative Imaging of Soot in an Explosively Generated Fireball

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Saltzman, Ashley J.; Guildenbecher, Daniel R.; Kearney, S.P.; Wan, Kevin W.; Manin, Julien L.; Pickett, Lyle M.

The detonation of explosives produces luminous fireballs often containing particulates such as carbon soot or remnants of partially reacted explosives. The spatial distribution of these particulates is of great interest for the derivation and validation of models. In this work, three ultra-high-speed imaging techniques: diffuse back-illumination extinction, schlieren, and emission imaging, are utilized to investigate the particulate quantity, spatial distribution, and structure in a small-scale fireball. The measurements show the evolution of the particulate cloud in the fireball, identifying possible emission sources and regions of high optical thickness. Extinction measurements performed at two wavelengths shows that extinction follows the inverse wavelength behavior expected of absorptive particles in the Rayleigh scattering regime. The estimated mass from these extinction measurements shows an average soot yield consistent with previous soot collection experiments. The imaging diagnostics discussed in the current work can provide detailed information on the spatial distribution and concentration of soot, crucial for validation opportunities in the future.

More Details
8 Results
8 Results