Publications

Results 1–25 of 75

Search results

Jump to search filters

AI for Technoscientific Discovery: A Human-Inspired Architecture

Journal of Creativity (Online)

Tsao, Jeffrey Y.; Abbott, Robert G.; Crowder, Douglas C.; Desai, Saaketh D.; Dingreville, Remi P.; Fowler, James E.; Garland, Anthony G.; Murdock, Jaimie M.; Steinmetz, Scott T.; Yarritu, Kevin A.; Johnson, Curtis M.; Stracuzzi, David J.; Padmanabha Iyer, Prasad P.

We present a high-level architecture for how artificial intelligences might advance and accumulate scientific and technological knowledge, inspired by emerging perspectives on how human intelligences advance and accumulate such knowledge. Agents advance knowledge by exercising a technoscientific method—an interacting combination of scientific and engineering methods. The technoscientific method maximizes a quantity we call “useful learning” via more-creative implausible utility (including the “aha!” moments of discovery), as well as via less-creative plausible utility. Society accumulates the knowledge advanced by agents so that other agents can incorporate and build on to make further advances. The proposed architecture is challenging but potentially complete: its execution might in principle enable artificial intelligences to advance and accumulate an equivalent of the full range of human scientific and technological knowledge.

More Details

Decision Science for Machine Learning (DeSciML)

Darling, Michael C.; Field, Richard V.; Smith, Mark A.; Doak, Justin E.; Headen, James M.; Stracuzzi, David J.

The increasing use of machine learning (ML) models to support high-consequence decision making drives a need to increase the rigor of ML-based decision making. Critical problems ranging from climate change to nonproliferation monitoring rely on machine learning for aspects of their analyses. Likewise, future technologies, such as incorporation of data-driven methods into the stockpile surveillance and predictive failure analysis for weapons components, will all rely on decision-making that incorporates the output of machine learning models. In this project, our main focus was the development of decision scientific methods that combine uncertainty estimates for machine learning predictions, with a domain-specific model of error costs. Other focus areas include uncertainty measurement in ML predictions, designing decision rules using multiobjecive optimization, the value of uncertainty reduction, and decision-tailored uncertainty quantification for probability estimates. By laying foundations for rigorous decision making based on the predictions of machine learning models, these approaches are directly relevant to every national security mission that applies, or will apply, machine learning to data, most of which entail some decision context.

More Details

Exploring Explicit Uncertainty for Binary Analysis (EUBA)

Leger, Michelle A.; Darling, Michael C.; Jones, Stephen T.; Matzen, Laura E.; Stracuzzi, David J.; Wilson, Andrew T.; Bueno, Denis B.; Christentsen, Matthew; Ginaldi, Melissa; Laros, James H.; Heidbrink, Scott H.; Howell, Breannan C.; Leger, Chris; Reedy, Geoffrey E.; Rogers, Alisa N.; Williams, Jack A.

Reverse engineering (RE) analysts struggle to address critical questions about the safety of binary code accurately and promptly, and their supporting program analysis tools are simply wrong sometimes. The analysis tools have to approximate in order to provide any information at all, but this means that they introduce uncertainty into their results. And those uncertainties chain from analysis to analysis. We hypothesize that exposing sources, impacts, and control of uncertainty to human binary analysts will allow the analysts to approach their hardest problems with high-powered analytic techniques that they know when to trust. Combining expertise in binary analysis algorithms, human cognition, uncertainty quantification, verification and validation, and visualization, we pursue research that should benefit binary software analysis efforts across the board. We find a strong analogy between RE and exploratory data analysis (EDA); we begin to characterize sources and types of uncertainty found in practice in RE (both in the process and in supporting analyses); we explore a domain-specific focus on uncertainty in pointer analysis, showing that more precise models do help analysts answer small information flow questions faster and more accurately; and we test a general population with domain-general sudoku problems, showing that adding "knobs" to an analysis does not significantly slow down performance. This document describes our explorations in uncertainty in binary analysis.

More Details

AI-Enhanced Co-Design for Next-Generation Microelectronics: Innovating Innovation (Workshop Report)

Descour, Michael R.; Tsao, Jeffrey Y.; Stracuzzi, David J.; Wakeland, Anna K.; Schultz, David R.; Smith, William; Weeks, Jacquilyn A.

On April 6-8, 2021, Sandia National Laboratories hosted a virtual workshop to explore the potential for developing AI-Enhanced Co-Design for Next-Generation Microelectronics (AICoM). The workshop brought together two themes. The first theme was articulated in the 2018 Department of Energy Office of Science (DOE SC) “Basic Research Needs for Microelectronics” (BRN) report, which called for a “fundamental rethinking” of the traditional design approach to microelectronics, in which subject matter experts (SMEs) in each microelectronics discipline (materials, devices, circuits, algorithms, etc.) work near-independently. Instead, the BRN called for a non-hierarchical, egalitarian vision of co-design, wherein “each scientific discipline informs and engages the others” in “parallel but intimately networked efforts to create radically new capabilities.” The second theme was the recognition of the continuing breakthroughs in artificial intelligence (AI) that are currently enhancing and accelerating the solution of traditional design problems in materials science, circuit design, and electronic design automation (EDA).

More Details

Robustness and Validation of Model and Digital Twins Deployment

Volkova, Svitana; Stracuzzi, David J.; Shafer, Jenifer; Ray, Jaideep R.; Pullum, Laura

For digital twins (DTs) to become a central fixture in mission critical systems, a better understanding is required of potential modes of failure, quantification of uncertainty, and the ability to explain a model’s behavior. These aspects are particularly important as the performance of a digital twin will evolve during model development and deployment for real-world operations.

More Details

Generating Uncertainty Distributions for Seismic Signal Onset Times

Bulletin of the Seismological Society of America

Peterson, Matthew G.; Stracuzzi, David J.; Young, Christopher J.; Vollmer, Charles V.; Brogan, Ronald

Signal arrival-time estimation plays a critical role in a variety of downstream seismic analyses, including location estimation and source characterization. Any arrival-time errors propagate through subsequent data-processing results. In this article, we detail a general framework for refining estimated seismic signal arrival times along with full estimation of their associated uncertainty. Using the standard short-term average/long-term average threshold algorithm to identify a search window, we demonstrate how to refine the pick estimate through two different approaches. In both cases, new waveform realizations are generated through bootstrap algorithms to produce full a posteriori estimates of uncertainty of onset arrival time of the seismic signal. The onset arrival uncertainty estimates provide additional data-derived information from the signal and have the potential to influence seismic analysis along several fronts.

More Details

Research Needs for Trusted Analytics in National Security Settings

Stracuzzi, David J.; Speed, Ann S.

As artificial intelligence, machine learning, and statistical modeling methods become commonplace in national security applications, the drive to create trusted analytics becomes increasingly important. The goal of this report is to identify areas of research that can provide the foundational understanding and technical prerequisites for the development and deployment of trusted analytics in national security settings. Our review of the literature covered several disjoint research communities, including computer science, statistics, human factors, and several branches of psychology and cognitive science, which tend not to interact with one another or cite each other's literatures. As a result, there exists no agreed-upon theoretical framework for understanding how various factors influence trust and no well-established empirical paradigm for studying these effects. This report therefore takes three steps. First, we define several key terms in an effort to provide a unifying language for trusted analytics and to manage the scope of the problem. Second, we outline an empirical perspective that identifies key independent, moderating, and dependent variables in assessing trusted analytics. Though not a substitute for a theoretical framework, the empirical perspective does support research and development of trusted analytics in the national security domain. Finally, we discuss several research gaps relevant to developing trusted analytics for the national security mission space.

More Details

Arctic Tipping Points Triggering Global Change (LDRD Final Report)

Peterson, Kara J.; Powell, Amy J.; Kalashnikova, Irina; Roesler, Erika L.; Nichol, Jeffrey N.; Peterson, Matthew G.; Davis, Warren L.; Jakeman, John D.; Stracuzzi, David J.; Bull, Diana L.

The Arctic is warming and feedbacks in the coupled Earth system may be driving the Arctic to tipping events that could have critical downstream impacts for the rest of the globe. In this project we have focused on analyzing sea ice variability and loss in the coupled Earth system Summer sea ice loss is happening rapidly and although the loss may be smooth and reversible, it has significant consequences for other Arctic systems as well as geopolitical and economic implications. Accurate seasonal predictions of sea ice minimum extent and long-term estimates of timing for a seasonally ice-free Arctic depend on a better understanding of the factors influencing sea ice dynamics and variation in this strongly coupled system. Under this project we have investigated the most influential factors in accurate predictions of September Arctic sea ice extent using machine learning models trained separately on observational data and on simulation data from five E3SM historical ensembles. Monthly averaged data from June, July, and August for a selection of ice, ocean, and atmosphere variables were used to train a random forest regression model. Gini importance measures were computed for each input feature with the testing data. We found that sea ice volume is most important earlier in the season (June) and sea ice extent became a more important predictor closer to September. Results from this study provide insight into how feature importance changes with forecast length and illustrates differences between observational data and simulated Earth system data. We have additionally performed a global sensitivity analysis (GSA) using a fully coupled ultra- low resolution configuration E3SM. To our knowledge, this is the first global sensitivity analysis involving the fully-coupled E3SM Earth system model. We have found that parameter variations show significant impact on the Arctic climate state and atmospheric parameters related to cloud parameterizations are the most significant. We also find significant interactions between parameters from different components of E3SM. The results of this study provide invaluable insight into the relative importance of various parameters from the sea ice, atmosphere and ocean components of the E3SM (including cross-component parameter interactions) on various Arctic-focused quantities of interest (QOIs).

More Details

Measuring and Extracting Activity from Time Series Data

Stracuzzi, David J.; Peterson, Matthew G.; Popoola, Gabriel A.

This report summarizes the results of an LDRD focused on developing and demonstrating statistically rigorous methods for analyzing and comparing complex activities from remote sensing data. Identifying activity from remote sensing data, particularly those that play out over time and span multiple locations, often requires extensive manual effort because of the variety of features that describe the activity and the required domain expertise. Our results suggest that there are some hidden challenges in extracting and representing activities in sensor data. In particular, we found that the variability in the underlying behaviors can be difficult to overcome statistically, and the report identifies several examples of the issue. We discuss key lessons learned in the context of the project, and finally conclude with recommendations on next steps and future work.

More Details
Results 1–25 of 75
Results 1–25 of 75