Publications

2 Results
Skip to search filters

Shifting from Fossil Fuel Reliance to Green Energy Sovereignty: Ute Mountain Ute Tribe

Montoya, Rudy A.

Self-determination has been an on-going effort for Native American people and gained much traction with the passing of The Energy Policy Act of 2005, which included the Indian Tribal Energy Development and Self-Determination Act. Congress passed this act to assist Native American tribes and Alaska Native villages with planning, development, and assistance to achieve their energy goals. The Ute Mountain Ute Tribe (UMUT) has relied on oil and natural gas for economic support the last 70 years. Burning fossil fuels, along with oil and gas development, decreases the quality of air and leads to increased greenhouse gas emissions. Subsequently, the burning of fossil fuels to produce energy is now more costly than many renewable energy sources, including solar photovoltaic (PV) systems. Environmental stewardship, along with the need to maintain revenue generation, has led UMUT’s efforts to achieve energy self-determinism employing PV and exploring other technology. In the past, the tribe completed a 1 megawatt PV project near Towaoc, Colorado, which serves as a case study on the tribe’s energy goals: a future where renewables will dominate their energy landscape. This paper explores UMUT’s past and on-going efforts toward energy independence and how it relates to the broader landscape of Native American energy sovereignty.

More Details

Signal-Based Fast Tripping Protection Schemes for Electric Power Distribution System Resilience

Reno, Matthew J.; Jimenez Aparicio, Miguel J.; Wilches-Bernal, Felipe W.; Hernandez Alvidrez, Javier H.; Montoya, Armando Y.; Barba, Pedro; Flicker, Jack D.; Dow, Andrew R.; Bidram, Ali B.; Paruthiyil, Sajay P.; Montoya, Rudy A.; Poudel, Binod P.; Reimer, Benjamin R.; Lavrova, Olga L.; Biswal, Milan B.; Miyagishima, Frank M.; Carr, Christopher L.; Pati, Shubhasmita P.; Ranade, Satish J.; Grijalva, Santiago G.; Paul, Shuva P.

This report is a summary of a 3-year LDRD project that developed novel methods to detect faults in the electric power grid dramatically faster than today’s protection systems. Accurately detecting and quickly removing electrical faults is imperative for power system resilience and national security to minimize impacts to defense critical infrastructure. The new protection schemes will improve grid stability during disturbances and allow additional integration of renewable energy technologies with low inertia and low fault currents. Signal-based fast tripping schemes were developed that use the physics of the grid and do not rely on communication to reduce cyber risks for safely removing faults.

More Details
2 Results
2 Results