Publications

8 Results

Search results

Jump to search filters

Uncertainty Quantification-Based Unmanned Aircraft System Detection using Deep Ensembles

IEEE Vehicular Technology Conference

Sahay, Rajeev S.; Birch, Gabriel C.; Stubbs, Jaclynn J.; Brinton, Christopher G.

Robust and accurate unmanned aircraft system (UAS) detection is pivotal in restricted air spaces. Deep learning-based object detection has been proposed to identify the presence of UASs, but it introduces two key challenges. Specifically, deep learning detectors (i) provide point estimates at test-time with no associated measure of uncertainty, and (ii) easily trigger false positive detections for birds and other aerial wildlife. In this work, we propose a novel detection algorithm, which is capable of providing uncertainty quantification (UQ) metrics at test time while also significantly reducing the false positive rate on natural wildlife. Our proposed method consists of using an ensemble of object detectors to generate a distributive estimate of each input prediction. In addition, we measure multiple UQ-based scoring metrics for each input to further validate our model's effectiveness. Through evaluation on our custom generated UAS dataset, consisting of images captured from deployed cameras, we show that our model provides robust UQ estimates, low false positive rates on wildlife, and significantly improved error rates over singular deep learning detection models.

More Details

Hyperspectral Image Target Detection Using Deep Ensembles for Robust Uncertainty Quantification

Conference Record - Asilomar Conference on Signals, Systems and Computers

Sahay, Rajeev S.; Ries, Daniel R.; Zollweg, Joshua D.; Brinton, Christopher G.

Deep learning (DL) has been widely proposed for target detection in hyperspectral image (HSI) data. Yet, standard DL models produce point estimates at inference time, with no associated measure of uncertainty, which is vital in high-consequence HSI applications. In this work, we develop an uncertainty quantification (UQ) framework using deep ensemble (DE) learning, which builds upon the successes of DL-based HSI target detection, while simultaneously providing UQ metrics. Specifically, we train an ensemble of convolutional deep learning detection models using one spectral prototype at a particular time of day and atmospheric condition. We find that our proposed framework is capable of accurate target detection in additional atmospheric conditions and times of day despite not being exposed to them during training. Furthermore, in comparison to Bayesian Neural Networks, another DL based UQ approach, we find that DEs provide increased target detection performance while achieving comparable probabilities of detection at constant false alarm rates.

More Details
8 Results
8 Results