The Z machine is a current driver producing up to 30 MA in 100 ns that utilizes a wide range of diagnostics to assess accelerator performance and target behavior conduct experiments that use the Z target as a source of radiation or high pressures. Here, we review the existing suite of diagnostic systems, including their locations and primary configurations. The diagnostics are grouped in the following categories: pulsed power diagnostics, x-ray power and energy, x-ray spectroscopy, x-ray imaging (including backlighting, power flow, and velocimetry), and nuclear detectors (including neutron activation). We will also briefly summarize the primary imaging detectors we use at Z: image plates, x-ray and visible film, microchannel plates, and the ultrafast x-ray imager. The Z shot produces a harsh environment that interferes with diagnostic operation and data retrieval. We term these detrimental processes “threats” of which only partial quantifications and precise sources are known. Finally, we summarize the threats and describe techniques utilized in many of the systems to reduce noise and backgrounds.
We have commissioned a new time-resolved, x-ray imaging diagnostic for the Z facility. The primary intended application is for diagnosing the stagnation behavior of Magnetized Liner Inertial Fusion (MagLIF) and similar targets. We have a variety of imaging systems at Z, both time-integrated and time-resolved, that provide valuable x-ray imaging information, but no system at Z up to this time provides a combined high-resolution imaging with multi-frame time resolution; this new diagnostic, called TRICXI for Time Resolved In-Chamber X-ray Imager, is meant to provide time-resolved spatial imaging with high resolution. The multi-frame camera consists of a microchannel plate camera. A key component to achieving the design goals is to place the instrument inside the Z vacuum chamber within 2 m of the load, which necessitates a considerable amount of x-ray shielding as well as a specially designed, independent vacuum system. A demonstration of the imaging capability for a series of MagLIF shots is presented. Predictions are given for resolution and relative image irradiance to guide experimenters in choosing the desired configuration for their experiments.
A new Wolter x-ray imager has been developed for the Z machine to study the emission of warm (>15 keV) x-ray sources. A Wolter optic has been adapted from observational astronomy and medical imaging, which uses curved x-ray mirrors to form a 2D image of a source with 5 × 5 × 5 mm3 field-of-view and measured 60-300-μm resolution on-axis. The mirrors consist of a multilayer that create a narrow bandpass around the Mo Kα lines at 17.5 keV. We provide an overview of the instrument design and measured imaging performance. In addition, we present the first data from the instrument of a Mo wire array z-pinch on the Z machine, demonstrating improvements in spatial resolution and a 350-4100× increase in the signal over previous pinhole imaging techniques.
We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-μm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 μm.
Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.