Publications

Results 1–25 of 76

Search results

Jump to search filters

Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity

ACS Applied Materials and Interfaces

Lapp, Aliya S.; Merrill, Laura C.; Wygant, Bryan R.; Ashby, David; Bhandarkar, Austin B.; Zhang, Alan C.; Fuller, Elliot J.; Harrison, Katharine L.; Lambert, Timothy N.; Talin, A.A.

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm–2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm–1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. Importantly, the stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.

More Details

Neuromorphic Information Processing by Optical Media

Leonard, Francois L.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Proton Tunable Analog Transistor for Low Power Computing

Robinson, Donald A.; Foster, Michael R.; Bennett, Christopher H.; Bhandarkar, Austin B.; Fuller, Elliot J.; Stavila, Vitalie S.; Spataru, Dan C.; Krishnakumar, Raga K.; Cole-Filipiak, Neil C.; Schrader, Paul E.; Ramasesha, Krupa R.; Allendorf, Mark D.; Talin, A.A.

This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .

More Details

Spatially Resolved Potential and Li-Ion Distributions Reveal Performance-Limiting Regions in Solid-State Batteries

ACS Energy Letters

Fuller, Elliot J.; Strelcov, Evgheni; Weaver, Jamie L.; Swift, Michael W.; Sugar, Joshua D.; Kolmakov, Andrei; Zhitenev, Nikolai; Mcclelland, Jabez J.; Qi, Yue; Dura, Joseph A.; Talin, A.A.

The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte-electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force microscopy (KPFM) and neutron depth profiling (NDP), to identify the rate-limiting interface in operating Si-LiPON-LiCoO2 solid-state batteries by mapping the contact potential difference (CPD) and the corresponding Li distributions. The contributions from ions, electrons, and interfaces are deconvolved by correlating the CPD profiles with Li-concentration profiles and by comparisons with first-principles-informed modeling. We find that the largest potential drop and variation in the Li concentration occur at the anode-electrolyte interface, with a smaller drop at the cathode-electrolyte interface and a shallow gradient within the bulk electrolyte. Correlating these results with electrochemical impedance spectroscopy following battery cycling at low and high rates confirms a long-standing conjecture linking large potential drops with a rate-limiting interfacial process.

More Details

Scanning ultrafast electron microscopy reveals photovoltage dynamics at a deeply buried p-Si/Si O2 interface

Physical Review B

Ellis, S.R.; Bartelt, Norman C.; Leonard, Francois L.; Celio, K.C.; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Liao, B.; Talin, A.A.

The understanding and control of charge carrier interactions with defects at buried insulator/semiconductor interfaces is essential for achieving optimum performance in modern electronics. Here, we report on the use of scanning ultrafast electron microscopy (SUEM) to remotely probe the dynamics of excited carriers at a Si surface buried below a thick thermal oxide. Our measurements illustrate a previously unidentified SUEM contrast mechanism, whereby optical modulation of the space-charge field in the semiconductor modulates the electric field in the thick oxide, thus affecting its secondary electron yield. By analyzing the SUEM contrast as a function of time and laser fluence we demonstrate the diffusion mediated capture of excited carriers by interfacial traps.

More Details

Thermal Infrared Detectors: expanding performance limits using ultrafast electron microscopy

Talin, A.A.; Ellis, Scott; Bartelt, Norman C.; Leonard, Francois L.; Perez, Christopher P.; Celio, Km; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Young, Steve M.; Smith, Sean M.; Kumar, Suhas K.

This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.

More Details

Co-Design of Free-Space Metasurface Optical Neuromorphic Classifiers for High Performance

ACS Photonics

Leonard, Francois L.; Backer, Adam S.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ × 100λ with an aperture density λ-2 achieve ∼96% testing accuracy on the MNIST data set, for an optimized distance ∼100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory

Frontiers in Neuroscience (Online)

Talin, A.A.; Li, Yiyang; Fuller, Elliot J.; Bennett, Christopher H.; Xiao, Tianyao X.; Salleo, Alberto; Melianas, Armantas; Isele, Erik; Marinella, Matthew J.; Tao, Hanbo

In-memory computing based on non-volatile resistive memory can significantly improve the energy efficiency of artificial neural networks. However, accurate in situ training has been challenging due to the nonlinear and stochastic switching of the resistive memory elements. One promising analog memory is the electrochemical random-access memory (ECRAM), also known as the redox transistor. Its low write currents and linear switching properties across hundreds of analog states enable accurate and massively parallel updates of a full crossbar array, which yield rapid and energy-efficient training. While simulations predict that ECRAM based neural networks achieve high training accuracy at significantly higher energy efficiency than digital implementations, these predictions have not been experimentally achieved. In this work, we train a 3 × 3 array of ECRAM devices that learns to discriminate several elementary logic gates (AND, OR, NAND). We record the evolution of the network’s synaptic weights during parallel in situ (on-line) training, with outer product updates. Due to linear and reproducible device switching characteristics, our crossbar simulations not only accurately simulate the epochs to convergence, but also quantitatively capture the evolution of weights in individual devices. The implementation of the first in situ parallel training together with strong agreement with simulation results provides a significant advance toward developing ECRAM into larger crossbar arrays for artificial neural network accelerators, which could enable orders of magnitude improvements in energy efficiency of deep neural networks.

More Details

Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching

Advanced Materials

Talin, A.A.; Fuller, Elliot J.; Li, Yiyang; Marinella, Matthew J.; Sugar, Joshua D.; Bennett, Christopher H.; Bartsch, Michael B.; Horton, Robert D.; Yoo, Sangmin; Ashby, David; Lu, Wei D.

Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue-memory-based neuromorphic computing can be orders of magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer-sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria-stabilized zirconia (YSZ), toward eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk-RRAM devices using TiO2-X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy-efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.

More Details

Redox transistors based on TiO2 for analogue neuromorphic computing

Li, Yiyang; Fuller, Elliot J.; Talin, A.A.

The ability to train deep neural networks on large data sets have made significant impacts onto artificial intelligence, but consume significant amounts of energy due to the need to move information from memory to logic units. In-memory "neuromorphic" computing presents an alternative framework that processes information directly on memory elements. In-memory computing has been limited by the poor performance of the analogue information storage element, often phase-change memory or memristors. To solve this problem, we developed two types of "redox transistors" using TiO2 (anatase) which stores analogue information states through the electrochemical concentration of dopants in the crystal. The first type of redox transistor uses lithium as the electrochemical dopant ion, and its key advantage is low operating voltage. The second uses oxygen vacancies as the dopant, which is CMOS compatible and can retain state even when scaled to nanosized dimensions. Both devices offer significant advantages in terms of predictable analogue switching over conventional filamentary-based devices, and provide a significant advance in developing materials and devices for neuromorphic computing.

More Details
Results 1–25 of 76
Results 1–25 of 76