Before residential photovoltaic (PV) systems are interconnected with the grid, various planning and impact studies are conducted on detailed models of the system to ensure safety and reliability are maintained. However, these model-based analyses can be time-consuming and error-prone, representing a potential bottleneck as the pace of PV installations accelerates. Data-driven tools and analyses provide an alternate pathway to supplement or replace their model-based counterparts. In this article, a data-driven algorithm is presented for assessing the thermal limitations of PV interconnections. Using input data from residential smart meters, and without any grid models or topology information, the algorithm can determine the nameplate capacity of the service transformer supplying those customers. The algorithm was tested on multiple datasets and predicted service transformer capacity with >98% accuracy, regardless of existing PV installations. This algorithm has various applications from model-free thermal impact analysis for hosting capacity studies to error detection and calibration of existing grid models.
Fault location, isolation, and service restoration of a self-healing, self-Assembling microgrid operating off-grid from distributed inverter-based resources (IBRs) can be a unique challenge because of the fault current limitations and uncertainties regarding which sources are operational at any given time. The situation can become even more challenging if data sharing between the various microgrid controllers, relays, and sources is not available. This paper presents an innovative robust partitioning approach, which is used as part of a larger self-Assembling microgrid concept utilizing local measurements only. This robust partitioning approach splits a microgrid into sub-microgrids to isolate the fault to just one of the sub-microgrids, allowing the others to continue normal operation. A case study is implemented in the IEEE 123-bus distribution test system in Simulink to show the effectiveness of this approach. The results indicate that including the robust partitions leads to less loss of load and shorter overall restoration times.
Before residential photovoltaic (PV) systems are interconnected with the grid, various planning and impact studies are conducted on detailed models of the system to ensure safety and reliability are maintained. However, these model-based analyses can be time-consuming and error-prone, representing a potential bottleneck as the pace of PV installations accelerates. Data-driven tools and analyses provide an alternate pathway to supplement or replace their model-based counterparts. In this article, a data-driven algorithm is presented for assessing the thermal limitations of PV interconnections. Using input data from residential smart meters, and without any grid models or topology information, the algorithm can determine the nameplate capacity of the service transformer supplying those customers. The algorithm was tested on multiple datasets and predicted service transformer capacity with >98% accuracy, regardless of existing PV installations. This algorithm has various applications from model-free thermal impact analysis for hosting capacity studies to error detection and calibration of existing grid models.
High penetrations of residential solar PV can cause voltage issues on low-voltage (LV) secondary networks. Distribution utility planners often utilize model-based power flow solvers to address these voltage issues and accommodate more PV installations without disrupting the customers already connected to the system. These model-based results are computationally expensive and often prone to errors. In this paper, two novel deep learning-based model-free algorithms are proposed that can predict the change in voltages for PV installations without any inherent network information of the system. These algorithms will only use the real power (P), reactive power (Q), and voltage (V) data from Advanced Metering Infrastructure (AMI) to calculate the change in voltages for an additional PV installation for any customer location in the LV secondary network. Both algorithms are tested on three datasets of two feeders and compared to the conventional model-based methods and existing model-free methods. The proposed methods are also applied to estimate the locational PV hosting capacity for both feeders and have shown better accuracies compared to an existing model-free method. Results show that data filtering or pre-processing can improve the model performance if the testing data point exists in the training dataset used for that model.
Residential solar photovoltaic (PV) systems are interconnected with the distribution grid at low-voltage secondary network locations. However, computational models of these networks are often over-simplified or non-existent, which makes it challenging to determine the operational impacts of new PV installations at those locations. In this work, a model-free locational hosting capacity analysis algorithm is proposed that requires only smart meter measurements at a given location to calculate the maximum PV size that can be accommodated without exceeding voltage constraints. The proposed algorithm was evaluated on two different smart meter datasets measuring over 2,700 total customer locations and was compared against results obtained from conventional model-based methods for the same smart meter datasets. Compared to the model-based results, the model-free algorithm had a mean absolute error (MAE) of less than 0.30 kW, was equally sensitive to measurement noise, and required much less computation time.
The widespread adoption of residential solar PV requires distribution system studies to ensure the addition of solar PV at a customer location does not violate the system constraints, which can be referred to as locational hosting capacity (HC). These model-based analyses are prone to error due to their dependencies on the accuracy of the system information. Model-free approaches to estimate the solar PV hosting capacity for a customer can be a good alternative to this approach as their accuracies do not depend on detailed system information. In this paper, an Adaptive Boosting (AdaBoost) algorithm is deployed to utilize the statistical properties (mean, minimum, maximum, and standard deviation) of the customer's historical data (real power, reactive power, voltage) as inputs to estimate the voltage-constrained PV HC for the customer. A baseline comparison approach is also built that utilizes just the maximum voltage of the customer to predict PV HC. The results show that the ensemble-based AdaBoost algorithm outperformed the proposed baseline approach. The developed methods are also compared and validated by existing state-of-the-art model-free PV HC estimation methods.
Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany; Lave, Matt; Azzolini, Joseph A.; Yusuf, Jubair; Jones, Christian B.; Furlani Bastos, Alvaro; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim; Holman, Derek; Mannon, Tim; Pinney, David
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.