In many applications, one can only access the inexact gradients and inexact hessian times vector products. Thus it is essential to consider algorithms that can handle such inexact quantities with a guaranteed convergence to solution. An inexact adaptive and provably convergent semismooth Newton method is considered to solve constrained optimization problems. In particular, dynamic optimization problems, which are known to be highly expensive, are the focus. A memory efficient semismooth Newton algorithm is introduced for these problems. The source of efficiency and inexactness is the randomized matrix sketching. Applications to optimization problems constrained by partial differential equations are also considered.
A key challenge in inverse problems is the selection of sensors to gather the most effective data. In this paper, we consider the problem of inferring the initial condition to a linear dynamical system and develop an efficient control-theoretical approach for greedily selecting sensors. Our method employs a Galerkin projection to reduce the size of the inverse problem, resulting in a computationally efficient algorithm for sensor selection. As a byproduct of our algorithm, we obtain a preconditioner for the inverse problem that enables the rapid recovery of the initial condition. We analyze the theoretical performance of our greedy sensor selection algorithm as well as the performance of the associated preconditioner. Finally, we verify our theoretical results on various inverse problems involving partial differential equations.
We present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suitable for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy that allows it to exploit problem-specific variable scalings and inner products. We analyze convergence of ALESQP under different assumptions. We show that strong accumulation points are stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite dimensions we establish that weak accumulation points are feasible in many practical situations. Under additional assumptions we show that weak accumulation points are stationary. We present several infinite-dimensional examples where ALESQP shows remarkable discretization-independent performance in all of its iterative components, requiring a modest number of iterations to meet constraint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution of an infinite-dimensional problem with nonlinear inequality constraints.
Many applications require minimizing the sum of smooth and nonsmooth functions. For example, basis pursuit denoising problems in data science require minimizing a measure of data misfit plus an $\ell^1$-regularizer. Similar problems arise in the optimal control of partial differential equations (PDEs) when sparsity of the control is desired. Here, we develop a novel trust-region method to minimize the sum of a smooth nonconvex function and a nonsmooth convex function. Our method is unique in that it permits and systematically controls the use of inexact objective function and derivative evaluations. When using a quadratic Taylor model for the trust-region subproblem, our algorithm is an inexact, matrix-free proximal Newton-type method that permits indefinite Hessians. We prove global convergence of our method in Hilbert space and demonstrate its efficacy on three examples from data science and PDE-constrained optimization.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.
In this paper, we develop an algorithm to efficiently solve risk-averse optimization problems posed in reflexive Banach space. Such problems often arise in many practical applications as, e.g., optimization problems constrained by partial differential equations with uncertain inputs. Unfortunately, for many popular risk models including the coherent risk measures, the resulting risk-averse objective function is nonsmooth. This lack of differentiability complicates the numerical approximation of the objective function as well as the numerical solution of the optimization problem. To address these challenges, we propose a primal–dual algorithm for solving large-scale nonsmooth risk-averse optimization problems. This algorithm is motivated by the classical method of multipliers and by epigraphical regularization of risk measures. As a result, the algorithm solves a sequence of smooth optimization problems using derivative-based methods. We prove convergence of the algorithm even when the subproblems are solved inexactly and conclude with numerical examples demonstrating the efficiency of our method.
A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches to computing shape derivatives. Each has a major drawback: the boundary method is less accurate, while the volume method is more invasive to the FEM code. We introduce the strip method, which computes shape derivatives on a strip adjacent to the boundary. The strip method makes code coupling simple. Like the boundary method, it queries the state and adjoint solutions at quadrature nodes, but requires no knowledge of the FEM code implementations. At the same time, it exhibits the higher accuracy of the volume method. As an added benefit, its computational complexity is comparable to that of the boundary method, that is, it is faster than the volume method. We illustrate the benefits of the strip method with numerical examples.