Publications

18 Results

Search results

Jump to search filters

A soft departure from jamming: the compaction of deformable granular matter under high pressures

Soft Matter

Clemmer, Joel T.; Monti, Joseph M.; Lechman, Jeremy B.

The high-pressure compaction of three dimensional granular packings is simulated using a bonded particle model (BPM) to capture linear elastic deformation. In the model, grains are represented by a collection of point particles connected by bonds. A simple multibody interaction is introduced to control Poisson's ratio and the arrangement of particles on the surface of a grain is varied to model both high- and low-frictional grains. At low pressures, the growth in packing fraction and coordination number follow the expected behavior near jamming and exhibit friction dependence. As the pressure increases, deviations from the low-pressure power-law scaling emerge after the packing fraction grows by approximately 0.1 and results from simulations with different friction coefficients converge. These results are compared to predictions from traditional discrete element method simulations which, depending on the definition of packing fraction and coordination number, may only differ by a factor of two. As grains deform under compaction, the average volumetric strain and asphericity, a measure of the change in the shape of grains, are found to grow as power laws and depend heavily on the Poisson's ratio of the constituent solid. Larger Poisson's ratios are associated with less volumetric strain and more asphericity and the apparent power-law exponent of the asphericity may vary. The elastic properties of the packed grains are also calculated as a function of packing fraction. In particular, we find the Poisson's ratio near jamming is 1/2 but decreases to around 1/4 before rising again as systems densify.

More Details

Gradient nanostructuring via compositional means

Acta Materialia

Barrios Santos, Alejandro J.; Nathaniel, James E.; Monti, Joseph M.; Milne, Zachary M.; Adams, David P.; Hattar, Khalid M.; Medlin, Douglas L.; Dingreville, Remi P.; Boyce, Brad B.

Nanocrystalline metals are inherently unstable against thermal and mechanical stimuli, commonly resulting in significant grain growth. Also, while these metals exhibit substantial Hall-Petch strengthening, they tend to suffer from low ductility and fracture toughness. With regard to the grain growth problem, alloying elements have been employed to stabilize the microstructure through kinetic and/or thermodynamic mechanisms. And to address the ductility challenge, spatially-graded grain size distributions have been developed to facilitate heterogeneous deformation modes: high-strength at the surface and plastic deformation in the bulk. In the present work, we combine these two strategies and present a new methodology for the fabrication of gradient nanostructured metals via compositional means. We have demonstrated that annealing a compositionally stepwise Pt-Au film with a homogenous microstructure results in a film with a spatial microstructural gradient, exhibiting grains which can be twice as wide in the bulk compared to the outer surfaces. Additionally, phase-field modeling was employed for the comparison with experimental results and for further investigation of the competing mechanisms of Au diffusion and thermally induced grain growth. This fabrication method offers an alternative approach for developing the next generation of microstructurally stable gradient nanostructured films.

More Details

Identifying process-structure-property correlations related to the development of stress in metal thin films by high-throughput characterization and simulation-based methods

Kalaswad, Matias; Shrivastava, Ankit; Desai, Saaketh D.; Custer, Joyce O.; Khan, Ryan M.; Addamane, Sadhvikas J.; Monti, Joseph M.; Fowler, James E.; Rodriguez, Mark A.; DelRio, Frank W.; Kotula, Paul G.; D'Elia, Marta; Najm, H.N.; Dingreville, Remi P.; Boyce, Brad B.; Adams, David P.

Large-scale frictionless jamming with power-law particle size distributions

Physical Review E

Monti, Joseph M.; Clemmer, Joel T.; Srivastava, Ishan; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.

More Details

Stability of immiscible nanocrystalline alloys in compositional and thermal fields

Acta Materialia

Monti, Joseph M.; Hopkins, Emily M.; Hattar, Khalid M.; Abdeljawad, Fadi F.; Boyce, Brad B.; Dingreville, Remi P.

Alloying is often employed to stabilize nanocrystalline materials against microstructural coarsening. The stabilization process results from the combined effects of thermodynamically reducing the curvature-dominated driving force of grain-boundary motion via solute segregation and kinetically pinning these same grain boundaries by solute drag and Zener pinning. The competition between these stabilization mechanisms depends not only on the grain-boundary character but can also be affected by imposed compositional and thermal fields that further promote or inhibit grain growth. In this work, we study the origin of the stability of immiscible nanocrystalline alloys in both homogeneous and heterogeneous compositional and thermal fields by using a multi-phase-field formulation for anisotropic grain growth with grain-boundary character-dependent segregation properties. This generalized formulation allows us to model the distribution of mobilities of segregated grain boundaries and the role of grain-boundary heterogeneity on solute-induced stabilization. As an illustration, we compare our model predictions to experimental results of microstructures in platinum-gold nanocrystalline alloys. Our results reveal that increasing the initial concentration of available solute progressively slows the rate of grain growth via both heterogeneous grain-boundary segregation and Zener pinning, while increasing the temperature generally weakens thermodynamic stabilization effects due to entropic contributions. Finally, we demonstrate as a proof-of-concept that spatially-varying compositional and thermal fields can be used to construct dynamically-stable, graded, nanostructured materials. We discuss the implications of using such concepts as alternatives to conventional plastic deformation methods.

More Details

Benchmark problems for the Mesoscale Multiphysics Phase Field Simulator (MEMPHIS)

Dingreville, Remi P.; Stewart, James A.; Chen, Elton Y.; Monti, Joseph M.

This report details the current benchmark results to verify, validate and demonstrate the capabilities of the in-house multi-physics phase-field modeling framework Mesoscale Multiphysics Phase Field Simulator (MEMPHIS) developed at the Center for Integrated Nanotechnologies (CINT). MEMPHIS is a general phase-field capability to model various nanoscience and materials science phenomena related to microstructure evolution. MEMPHIS has been benchmarked against a suite of reported classical phase-field benchmark problems to verify and validate the correctness, accuracy and precision of the models and numerical methods currently implemented into the code.

More Details
18 Results
18 Results