Here, a review of current trends in scientific computing reveals a broad shift to open-source and higher-level programming languages such as Python and growing career opportunities over the next decade. Open-source modeling tools accelerate innovation in equation-based and data-driven applications. Significant resources have been deployed to develop data-driven tools (PyTorch, TensorFlow, Scikit-learn) from tech companies that rely on machine learning services to meet business needs while keeping the foundational tools open. Open-source equation-based tools such as Pyomo, CasADi, Gekko, and JuMP are also gaining momentum according to user community and development pace metrics. Integration of data-driven and principles-based tools is emerging. New compute hardware, productivity software, and training resources have the potential to radically accelerate progress. However, long-term support mechanisms are still necessary to sustain the momentum and maintenance of critical foundational packages.
Nonlinear modeling and optimization is a valuable tool for aiding decisions by engineering practitioners, but programming an optimization problem based on a complex electrical, mechanical, or chemical process is a time-consuming and error-prone activity. Therefore, there is a need for model analysis and debugging tools that can detect and diagnose modeling errors. One such tool is the Dulmage–Mendelsohn decomposition, which identifies structurally under- and over-determined subsets in systems of equations and variables by partitioning the bipartite graph of the system. This work provides the necessary background to understand the Dulmage–Mendelsohn decomposition and its application to the analysis of nonlinear optimization problems, demonstrates its use in diagnosing a variety of modeling errors, and introduces software implementations for analyzing nonlinear optimization problems in the Pyomo and JuMP algebraic modeling languages.
The DevOps movement, which aims to accelerate the continuous delivery of high-quality software, has taken a leading role in reshaping the software industry. Likewise, there is growing interest in applying DevOps tools and practices in the domains of computational science and engineering (CSE) to meet the ever-growing demand for scalable simulation and analysis. Translating insights from industry to research computing, however, remains an ongoing challenge; DevOps for science and engineering demands adaptation and innovation in those tools and practices. There is a need to better understand the challenges faced by DevOps practitioners in CSE contexts in bridging this divide. To that end, we conducted a participatory action research study to collect and analyze the experiences of DevOps practitioners at a major US national laboratory through the use of storytelling techniques. We share lessons learned and present opportunities for future investigation into DevOps practice in the CSE domain.
Optimal mitigation planning for highly disruptive contingencies to a transmission-level power system requires optimization with dynamic power system constraints, due to the key role of dynamics in system stability to major perturbations. We formulate a generalized disjunctive program to determine optimal grid component hardening choices for protecting against major failures, with differential algebraic constraints representing system dynamics (specifically, differential equations representing generator and load behavior and algebraic equations representing instantaneous power balance over the transmission system). We optionally allow stochastic optimal pre-positioning across all considered failure scenarios, and optimal emergency control within each scenario. This novel formulation allows, for the first time, analyzing the resilience interdependencies of mitigation planning, preventive control, and emergency control. Using all three strategies in concert is particularly effective at maintaining robust power system operation under severe contingencies, as we demonstrate on the Western System Coordinating Council (WSCC) 9-bus test system using synthetic multi-device outage scenarios. Towards integrating our modeling framework with real threats and more realistic power systems, we explore applying hybrid dynamics to power systems. Our work is applied to basic RL circuits with the ultimate goal of using the methodology to model protective tripping schemes in the grid. Finally, we survey mitigation techniques for HEMP threats and describe a GIS application developed to create threat scenarios in a grid with geographic detail.
This report summarizes the guidance provided to Sustainable Engineering to help them learn about equation-oriented optimization and the Sandia-developed software packages Pyomo and IDAESPSE. This was a short 10-week project (October 2021 – December 2021) and the goal was to help the company learn about the IDAES framework and how it could be used for their future projects. The company submitted an SBIR proposal related to developing a green ammonia process model with IDAES and if that proposal is successful this NMSBA project could lead to future collaboration opportunities.
Advances in sensor technology have increased our ability to monitor a wide range of environments. However, even as the cost of sensors decline, only a limited number of sensors can be installed at any given site. The physical placement of sensors, along with the sensor technology and operating conditions, can have a large impact on our ability to adequately monitor environmental change. This paper introduces a new open-source Python package, called Chama, that determines optimal sensor placement and technology to improve a sensor network's detection capabilities. The methods are demonstrated using site-specific methane emission scenarios that capture uncertainty in wind conditions and emission characteristics. Mixed-integer linear programming formulations are used to determine sensor locations and detection thresholds that maximize detection of the emission scenarios. The optimized sensor networks consistently increase the ability to detect leaks, as compared to sensors placed near each potential emission source or along the perimeter of the site.