The additive manufacture of compositionally graded Al/Cu parts by laser engineered net shaping (LENS) is demonstrated. The use of a blue light build laser enabled deposition on a Cu substrate. The thermal gradient and rapid solidification inherent to selective laser melting enabled mass transport of Cu up to 4 mm from a Cu substrate through a pure Al deposition, providing a means of producing gradients with finer step sizes than the printed layer thicknesses. Divorcing gradient continuity from layer or particle size makes LENS a potentially enabling technology for the manufacture of graded density impactors for ramp compression experiments. Printing graded structures with pure Al, however, was prevented by the growth of Al2Cu3 dendrites and acicular grains amid a matrix of Al2Cu. A combination of adding TiB2 grain refining powder and actively varying print layer composition suppressed the dendritic growth mode and produced an equiaxed microstructure in a compositionally graded part. Material phase was characterized for crystal structure and nanoindentation hardness to enable a discussion of phase evolution in the rapidly solidifying melt pool of a LENS print.
Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
Additive manufacturing has ushered in a new paradigm of bottom-up materials-by-design of spatially non-uniform materials. Functionally graded materials have locally tailored compositions to provide optimized global properties and performance. In this letter, we propose an opportunity for the application of graded magnetic materials as lens elements for charged particle optics. A Hiperco50/Hymu80 (FeCo-2 V/Fe-80Ni-5Mo) graded magnetic alloy was successfully additively manufactured via Laser Directed Energy Deposition with spatially varying magnetic properties. The compositional gradient is then applied using computational simulations to demonstrate how a tailored material can enhance the magnetic performance of a critical, image-forming component of a transmission electron microscope.
Directed energy deposition (DED) is an attractive additive manufacturing (AM) process for large structural components. The rapid solidification and layer-by-layer process associated with DED results in non-ideal microstructures, such as large grains with strong crystallographic textures. These non-ideal microstructures can lead to severe anisotropy in the mechanical properties. Despite these challenges, DED has been identified as a potential solution for the manufacturing of near net shape Ti-6Al-4V preforms, replacing lost casting and forging capabilities. Two popular wire-based directed energy deposition (W-DED) processes were considered for the manufacturing of Ti-6Al-4V with assessments on their respective metallurgical and mechanical properties, as compared to a conventionally processed material. The two W-DED processes explored were wire arc additive manufacturing (WAAM) and electron beam additive manufacturing (EBAM). High throughput inspection and tensile testing procedures were utilized to generate statistically relevant data sets related to each process and sample orientation. The 2 AM technologies produced material with remarkably different microstructures and mechanical properties. Results revealed key differences in strength and ductility for the two disparate processes which were found to be related to differences in the metallurgical properties.
Kustas, Andrew K.; Mann, James B.; Trumble, Kevin P.; Chandrasekar, Srinivasan
Soft magnetic Fe-Si alloys (electrical steels) possess exceptional functional properties such as high permeability, low coercivity, and low core loss, which generally improve with increasing Si content in the alloy. However, Fe-Si alloys containing > 3.5 wt% Si are also characterized by prohibitively low workability and poor ductility that have prevented their efficient commercial production in sheet form by rolling. This has limited their use for improving efficiency of motors and transformers. In this study, hybrid cutting-extrusion (HCE) is used as a single-step thermomechanical processing method to produce continuous Fe-Si alloy sheet with high Si compositions of 4 wt% to 6.5 wt%. HCE sheet is shown to have a homogeneous annealed grain structure and simple-shear crystallographic textures. By controlling the HCE deformation path, varied crystallographic shear textures are created in the sheet. Quasi-static magnetic properties of the HCE sheet are evaluated to decouple the effects of sheet texture and Si composition on resultant permeability and coercivity properties. The results suggest that HCE, with suitable process scaling, is a viable route for production of high-Si content electrical steel sheet for next-generation motors and transformers.
Mann, James B.; Mohanty, Debapriya P.; Kustas, Andrew K.; Stiven Puentes Rodriguez, B.; Issahaq, Mohammed N.; Udupa, Anirudh; Sugihara, Tatsuya; Trumble, Kevin P.; M'Saoubi, Rachid; Chandrasekar, Srinivasan
Machining-based deformation processing is used to produce metal foil and flat wire (strip) with suitable properties and quality for electrical power and renewable energy applications. In contrast to conventional multistage rolling, the strip is produced in a single-step and with much less process energy. Examples are presented from metal systems of varied workability, and strip product scale in terms of size and production rate. By utilizing the large-strain deformation intrinsic to cutting, bulk strip with ultrafine-grained microstructure, and crystallographic shear-texture favourable for formability, are achieved. Implications for production of commercial strip for electric motor applications and battery electrodes are discussed.
Saville, Alec I.; Benzing, Jake T.; Vogel, Sven C.; Buckner, Jessica L.; Donohoue, Collin; Kustas, Andrew K.; Creuziger, Adam; Clarke, Kester D.; Clarke, Amy J.
Metallic additive manufacturing (AM) provides a customizable and tailorable manufacturing process for new engineering designs and technologies. The greatest challenge currently facing metallic AM is maintaining control of microstructural evolution during solidification and any solid state phase transformations during the build process. Ti-6Al-4V has been extensively surveyed in this regard, with the potential solid state and solidification microstructures explored at length. This work evaluates the applicability of previously determined crystallographic markers of microstructural condition observed in electron beam melting powder bed fusion (PBF-EB) builds of Ti-6Al-4V in a directed energy deposition (DED) build process. The aim of this effort is to elucidate whether or not these specific crystallographic textures are useful tools for indicating microstructural conditions in AM variants beyond PBF-EB. Parent β-Ti grain size was determined to be directly related to α-Ti textures in the DED build process, and the solid state microstructural condition could be inferred from the intensity of specific α-Ti orientations. Qualitative trends on the as-solidified β-Ti grain size were also determined to be related to the presence of a fiber texture, and proposed as a marker for as-solidified grain size in any cubic metal melted by AM. Analysis of the DED Ti-6Al-4V build also demonstrated a near complete fracture of the build volume, suspected to originate from accumulated thermal stresses in the solid state. Crack propagation was found to only appreciably occur in regions of slow cooling with large α+β colonies. Schmid factors for the basal and prismatic α-Ti systems explained the observed crack pathway, including slower bifurcation in colonies with lower Schmid factors of both slip systems. Colony morphologies and localized equiaxed β-Ti solidification were also found to originate from build pauses during production and uneven heating of the build edges during deposition. Tailoring of DED Ti-6Al-4V microstructures with the insight gained here is proposed, along with cautionary insight on preventing unplanned build pauses to maintain an informed and controlled thermal environment for microstructural control.
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s−1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process.
High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.
Soft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established insgot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.