Publications

10 Results

Search results

Jump to search filters

A 6.8 - 9.4 GHz LNA Achieving 36.5 dB Peak Gain, Consuming 4.28 mW with an Adjustable Threshold Limiter for IR-UWB Applications

IEEE MTT-S International Microwave Symposium Digest

Lepkowski, Stefan; Forbes, Travis; Moody, Jesse

This paper presents a low-power staggered tunning LNA with a variable threshold limiter designed for impulse-radio ultra-wideband (IR-UWB). This amplifier has a high gain of 36.5 dB with a 3dB S21 frequency of 6.8 - 9.4 GHz while consuming 4.28 mW from a 0.8 V supply. The input return loss is better than 8 dB across the band and 10 dB from 6.9 GHz. The output return loss is better than 18 dB across the operating bandwidth. At 9 GHz, the minimum noise figure measured is 4.85 dB. The OP1dB compression point is measured at 7.8 GHz as -5.5 dBm. We also present an adjustable threshold limiter, providing additional protection over a typical diode limiter circuit. This amplifier is fabricated in a 45nm PD-SOI process. To the author's knowledge, this LNA demonstrates the highest linear figure of merit (FoM) in C and X band work.

More Details

A 0.2–2 GHz Time-Interleaved Multistage Switched-Capacitor Delay Element Achieving 2.55–448.6 ns Programmable Delay Range and 330 ns/mm2 Area Efficiency

IEEE Journal of Solid-State Circuits

Forbes, Travis; Magstadt, Benjamin T.; Moody, Jesse; Foulk, James W.; Suchanek, Andrew; Nelson, Spencer J.

Simulation of radar returns, full-duplex systems, and signal repeaters require hundreds of ns of programmable broadband radio frequency (RF) delay in the signal path to simulate large distances in the case of radar returns, for signal cancellation in full-duplex, and for isolation from reflections in signal repeaters. However, programmable broadband RF delay has been limited to ones of ns due to challenges in miniaturization with low loss and low power consumption. In this work, we present a 0.2–2 GHz digitally programmable RF delay element based on a time-interleaved multistage switched-capacitor (TIMS-SC) approach. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. Further, the delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55–448.6 ns programmable delay range with < 0.12% delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm 2 area efficiency. Through the proposed approach, the device shows minimal delay change across a -40 °C to 85 °C temperature range and < 0.25 dB gain variation across delay settings. The device achieves 26 dB gain, 7.4 dB noise figure, and consumes 74 mW from a 1 V supply with an active area of 1.36 mm 2.

More Details

A 0.2-2 GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6 ns Delay and 330 ns/mm2Area Efficiency

Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium

Forbes, Travis; Magstadt, Benjamin T.; Moody, Jesse; Suchanek, Andrew; Nelson, Spencer J.

A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with < 0.12% delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.

More Details

A 0.2-2 GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6 ns Delay and 330 ns/mm2Area Efficiency

Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium

Forbes, Travis; Magstadt, Benjamin T.; Moody, Jesse; Suchanek, Andrew; Nelson, Spencer J.

A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with < 0.12% delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.

More Details
10 Results
10 Results