Z-Petawatt Full-Aperture Upgrade
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Dichroic coatings have been developed for high transmission at 527 nm and high reflection at 1054 nm for laser operations in the nanosecond pulse regime. The coatings consist of HfO2 and SiO2 layers deposited with e-beam evaporation, and laser-induced damage thresholds as high as 12.5 J/cm2 were measured at 532 nm with 3.5 ns pulses (22.5 degrees angle of incidence, in S-polarization). However, laser damage measurements at the single wavelength of 532 nm do not adequately characterize the laser damage resistance of these coatings, since they were designed to operate at dual wavelengths simultaneously. This became apparent after one of the coatings damaged prematurely at a lower fluence in the beam train, which inspired further investigations. To gain a more complete understanding of the laser damage resistance, results of a dual-wavelength laser damage test performed at both 532 nm and 1064 nm are presented.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO2 and HfO2 and/or TiO2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. Here, the results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Abstract not provided.
Review of Scientific Instruments
X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.
Existing models for most materials do not describe phase transformations and associated lattice dy- namics (kinetics) under extreme conditions of pressure and temperature. Dynamic x-ray diffraction (DXRD) allows material investigations in situ on an atomic scale due to the correlation between solid-state structures and their associated diffraction patterns. In this LDRD project we have devel- oped a nanosecond laser-compression and picosecond-to-nanosecond x-ray diffraction platform for dynamically-compressed material studies. A new target chamber in the Target Bay in building 983 was commissioned for the ns, kJ Z-Beamlet laser (ZBL) and the 0.1 ns, 250 J Z-Petawatt (ZPW) laser systems, which were used to create 8-16 keV plasma x-ray sources from thin metal foils. The 5 ns, 15 J Chaco laser system was converted to a high-energy laser shock driver to load material samples to GPa stresses. Since laser-to-x-ray energy conversion efficiency above 10 keV is low, we employed polycapillary x-ray lenses for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. Polycapillary lenses enabled diffraction measurements up to 16 keV with ZBL as well as diffraction experiments with ZPW. This x-ray diffraction platform supports experiments that are complementary to gas guns and the Z facility due to different strain rates. Ultimately, there is now a foundation to evaluate DXRD techniques and detectors in-house before transferring the technology to Z. This page intentionally left blank.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We report on progress for increasing the laser-induced damage threshold of dichroic beam combiner coatings for high transmission at 527 nm and high reflection at 1054 nm (22.5° angle of incidence, S-polarization). The initial coating consisted of HfO2 and SiO2 layers deposited with electron beam evaporation, and the laser-induced damage threshold was 7 J/cm2 at 532 nm with 3.5 ns pulses. This study introduces different coating strategies that were utilized to increase the laser damage threshold of this coating to 12.5 J/cm2.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO 2 and HfO 2 and/or TiO 2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. The results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Proceedings of SPIE - The International Society for Optical Engineering
The laser damage thresholds of optical coatings can degrade over time due to a variety of factors, including contamination and aging. Optical coatings deposited using electron beam evaporation are particularly susceptible to degradation due to their porous structure. In a previous study, the laser damage thresholds of optical coatings were reduced by roughly a factor of two from 2013 to 2017. The coatings in question were high reflectors for 1054 nm that contained SiO 2 and HfO 2 and/or TiO 2 layers, and they were stored in sealed PETG containers in a class 100 cleanroom with temperature control. At the time, it was not certain whether contamination or thin film aging effects were responsible for the reduced laser damage thresholds. Therefore, to better understand the role of contamination, the coatings were recleaned and the laser damage thresholds were measured again in 2018. The results indicate that contamination played the most dominant role in reducing the laser damage thresholds of these optical coatings, even though they were stored in an environment that was presumed to be clean.
Abstract not provided.