Publications

Results 1–25 of 163
Skip to search filters

Large-scale frictionless jamming with power-law particle size distributions

Physical Review. E

Monti, Joseph M.; Clemmer, Joel T.; Srivastava, Ishan S.; Silber, Leonardo S.; Grest, Gary S.; Lechman, Jeremy B.

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Here, invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.

More Details

Inelastic peridynamic model for molecular crystal particles

Computational Particle Mechanics

Silling, Stewart A.; Barr, Christopher M.; Cooper, Marcia A.; Lechman, Jeremy B.; Bufford, Daniel C.

The peridynamic theory of solid mechanics is applied to modeling the deformation and fracture of micrometer-sized particles made of organic crystalline material. A new peridynamic material model is proposed to reproduce the elastic–plastic response, creep, and fracture that are observed in experiments. The model is implemented in a three-dimensional, meshless Lagrangian simulation code. In the small deformation, elastic regime, the model agrees well with classical Hertzian contact analysis for a sphere compressed between rigid plates. Under higher load, material and geometrical nonlinearity is predicted, leading to fracture. The material parameters for the energetic material CL-20 are evaluated from nanoindentation test data on the cyclic compression and failure of micrometer-sized grains.

More Details

Enabling Particulate Materials Processing Science for High-Consequence, Small-Lot Precision Manufacturing

Bolintineanu, Dan S.; Lechman, Jeremy B.; Bufford, Daniel C.; Clemmer, Joel T.; Cooper, Marcia A.; Erikson, William W.; Silling, Stewart A.; Oliver, Michael S.; Chavez, Andres A.; Schmalbach, Kevin M.; Mara, Nathan A.

This Laboratory Directed Research and Development project developed and applied closely coupled experimental and computational tools to investigate powder compaction across multiple length scales. The primary motivation for this work is to provide connections between powder feedstock characteristics, processing conditions, and powder pellet properties in the context of powder-based energetic components manufacturing. We have focused our efforts on multicrystalline cellulose, a molecular crystalline surrogate material that is mechanically similar to several energetic materials of interest, but provides several advantages for fundamental investigations. We report extensive experimental characterization ranging in length scale from nanometers to macroscopic, bulk behavior. Experiments included nanoindentation of well-controlled, micron-scale pillar geometries milled into the surface of individual particles, single-particle crushing experiments, in-situ optical and computed tomography imaging of the compaction of multiple particles in different geometries, and bulk powder compaction. In order to capture the large plastic deformation and fracture of particles in computational models, we have advanced two distinct meshfree Lagrangian simulation techniques: 1.) bonded particle methods, which extend existing discrete element method capabilities in the Sandia-developed , open-source LAMMPS code to capture particle deformation and fracture and 2.) extensions of peridynamics for application to mesoscale powder compaction, including a novel material model that includes plasticity and creep. We have demonstrated both methods for simulations of single-particle crushing as well as mesoscale multi-particle compaction, with favorable comparisons to experimental data. We have used small-scale, mechanical characterization data to inform material models, and in-situ imaging of mesoscale particle structures to provide initial conditions for simulations. Both mesostructure porosity characteristics and overall stress-strain behavior were found to be in good agreement between simulations and experiments. We have thus demonstrated a novel multi-scale, closely coupled experimental and computational approach to the study of powder compaction. This enables a wide range of possible investigations into feedstock-process-structure relationships in powder-based materials, with immediate applications in energetic component manufacturing, as well as other particle-based components and processes.

More Details

The mechanical response of micron-sized molecular crystals

MRS Advances

Barr, Christopher M.; Cooper, Marcia A.; Lechman, Jeremy B.; Bufford, Daniel C.

Microstructures and corresponding properties of compacted powders ultimately depend on the mechanical response of individual particles. In principle, computational simulations can predict the results of powder compaction processes, but the selection of appropriate models for both particle–particle interactions and particle deformations across all relevant length scales remain nontrivial tasks, especially in material systems lacking detailed mechanical property information. The work presented here addresses these issues by conducting uniaxial compressions in situ inside of a scanning electron microscope to characterize the mechanical response of individual micron-sized particles of a molecular crystal, hexanitrohexaazaisowurtzitane (CL-20). This experimental approach enabled the collection of quantitative force and displacement data alongside simultaneous imaging to capture morphology changes. The results reveal information about elastic deformation, yield, plastic deformation, creep, and fracture phenomena. Accordingly, this work demonstrates a generalizable approach for assessing the mechanical response of individual micron-sized molecular crystal particles and utilizing those responses in particle-level models. Graphic abstract: [Figure not available: see fulltext.].

More Details

Jamming of bidisperse frictional spheres

Physical Review Research

Srivastava, Ishan; Clemmer, Joel T.; Silbert, Leonardo E.; Lechman, Jeremy B.; Grest, Gary S.

By generalizing a geometric argument for frictionless spheres, a model is proposed for the jamming density φJ of mechanically stable packings of bidisperse, frictional spheres. The monodisperse, μs-dependent jamming density φJmono(μs) is the only input required in the model, where μs is the coefficient of friction. The predictions of the model are validated by robust estimates of φJ obtained from computer simulations of up to 107 particles for a wide range of μs, and size ratios up to 40:1. Although φJ varies nonmonotonically with the volume fraction of small spheres fs for all μs, its maximum value φJ,max at an optimal fmaxs are both μs dependent. The optimal fmaxs is characterized by a sharp transition in the fraction of small rattler particles.

More Details

Visualization and Simulation of Particle Rearrangement and Deformation During Powder Compaction

Conference Proceedings of the Society for Experimental Mechanics Series

Cooper, Marcia A.; Clemmer, Joel T.; Oliver, Michael S.; Bolintineanu, Dan S.; Lechman, Jeremy B.

Two key mechanical processes exist in the formation of powder compacts. These include the complex kinematics of particle rearrangement as the powder is densified and particle deformation leading to mechanical failure and fragmentation. Experiments measuring the time varying forces across a densifying powder bed have been performed in powders of microcrystalline cellulose with mean particle sizes between 0.4 and 1.2 mm. In these experiments, diagnostics measured the applied and transmitted loads and the bulk powder density. Any insight into the particle behavior must be inferred from deviations in the smoothly increasing stress-density compaction relationship. By incorporating a window in the compaction die body, simultaneous images of particle rearrangement and fracture at the confining window are captured. The images are post-processed in MATLAB® to track individual particle motion during compression. Complimentary discrete element method (DEM) simulations are presented and compared to experiment. The comparison provides insight into applying DEM methods for simulating large or permanent particle deformation and suggests areas for future study.

More Details

Granular packings with sliding, rolling, and twisting friction

Physical Review E

Santos, Andrew P.; Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Plimpton, Steven J.; Srivastava, Ishan; Silbert, Leonardo E.

Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction and other dissipative interactions. The resistance to rolling and spinning or twisting torque that stops a sphere also changes the microstructure of a granular packing of frictional spheres by increasing the number of constraints on the degrees of freedom of motion. We perform discrete element modeling simulations to construct sphere packings implementing a range of frictional constraints under a pressure-controlled protocol. Mechanically stable packings are achievable at volume fractions and average coordination numbers as low as 0.53 and 2.5, respectively, when the particles experience high resistance to sliding, rolling, and twisting. Only when the particle model includes rolling and twisting friction were experimental volume fractions reproduced.

More Details

Compression behavior of microcrystalline cellulose spheres: Single particle compression and confined bulk compression across regimes

Powder Technology

Cooper, Marcia A.; Oliver, Michael S.; Bufford, Daniel C.; White, Benjamin C.; Lechman, Jeremy B.

Particle characteristics can drastically influence the process-structure-property-performance aspects of granular materials in compression. We aim to computationally simulate the mechanical processes of stress redistribution in compacts including the kinematics of particle rearrangement during densification and particle deformation leading to fragmentation. Confined compression experiments are conducted with three sets of commercial microcrystalline cellulose particles nearly spherical in shape with different mean particle size. Experimentally measured compression curves from tall powder columns are fitted with the Kenkre et al. (J. of American Chemical Society, Vol. 79, No. 12) model. This model provides a basis to derive several common two-parameter literature models and as a framework to incorporate statistical representations of critical particle behaviors. We focus on the low-stress compression data and the model comparisons typically not discussed in the literature. Additional single particle compressions report fracture strength with particle size for comparison to the apparent particle strength extracted from bulk compression data.

More Details
Results 1–25 of 163
Results 1–25 of 163