Publications

Results 2001–2200 of 96,771

Search results

Jump to search filters

Voltage-Dependent First-Principles Simulation of Insertion of Chloride Ions into Al/Al2O3 Interfaces Using the Quantum Continuum Approximation

Journal of the Electrochemical Society

Campbell, Quinn C.

Experiments have shown that pitting corrosion can develop in aluminum surfaces at potentials > − 0.5 V relative to the standard hydrogen electrode (SHE). Until recently, the onset of pitting corrosion in aluminum has not been rigorously explored at an atomistic scale because of the difficulty of incorporating a voltage into density functional theory (DFT) calculations. We introduce the Quantum Continuum Approximation (QCA) which self-consistently couples explicit DFT calculations of the metal-insulator and insulator-solution interfaces to continuum Poisson-Boltzmann electrostatic distributions describing the bulk of the insulating region. By decreasing the number of atoms necessary to explicitly simulate with DFT by an order of magnitude, QCA makes the first-principles prediction of the voltage of realistic electrochemical interfaces feasible. After developing this technique, we apply QCA to predict the formation energy of chloride atoms inserting into oxygen vacancies in Al(111)/α-Al2O3 (0001) interfaces as a function of applied voltage. We predict that chloride insertion is only favorable in systems with a grain boundary in the Al2O3 for voltages > − 0.2 V (SHE). Our results roughly agree with the experimentally demonstrated onset of corrosion, demonstrating QCA’s utility in modeling realistic electrochemical systems at reasonable computational cost.

More Details

Directionally supervised cellular automaton for the initial peopling of sahul

Quaternary Science Reviews

White, Devin W.; Bradshaw, Corey J.A.; Crabtree, Stefani A.; Ulm, Sean; Bird, Michael I.; Williams, Alan N.; Saltre, Frederik

Reconstructing the patterns of Homo sapiens expansion out of Africa and across the globe has been advanced using demographic and travel-cost models. However, modelled routes are ipso facto influenced by migration rates, and vice versa. We combined movement ‘superhighways’ with a demographic cellular automaton to predict one of the world's earliest peopling events — Sahul between 75000 and 50000 years ago. Novel outcomes from the superhighways-weighted model include (i) an approximate doubling of the predicted time to continental saturation (∼10,000 years) compared to that based on the directionally unsupervised model (∼5000 years), suggesting that rates of migration need to account for topographical constraints in addition to rate of saturation; (ii) a previously undetected movement corridor south through the centre of Sahul early in the expansion wave based on the scenarios assuming two dominant entry points into Sahul; and (iii) a better fit to the spatially de-biased, Signor-Lipps-corrected layer of initial arrival inferred from dated archaeological material. Our combined model infrastructure provides a data-driven means to examine how people initially moved through, settled, and abandoned different regions of the globe.

More Details

Viral Preservation with Protein-Supplemented Nebulizing Media in Aerosols

Applied and Environmental Microbiology

Cahill, Jesse L.

The outbreak of SARS-CoV-2 has emphasized the need for a deeper understanding of infectivity, spread, and treatment of airborne viruses. Bacteriophages (phages) serve as ideal surrogates for respiratory pathogenic viruses thanks to their high tractability and the structural similarities tailless phages bear to viral pathogens. However, the aerosolization of enveloped SARS-CoV-2 surrogate phi6 usually results in a .3-log10 reduction in viability, limiting its usefulness as a surrogate for aerosolized coronavirus in “real world” contexts, such as a sneeze or cough. Recent work has shown that saliva or artificial saliva greatly improves the stability of viruses in aerosols and microdroplets relative to standard dilution/storage buffers like suspension medium (SM) buffer. These findings led us to investigate whether we could formulate media that preserves the viability of phi6 and other phages in artificially derived aerosols. Results indicate that SM buffer supplemented with bovine serum albumin (BSA) significantly improves the recovery of airborne phi6, MS2, and 80a and outperforms commercially formulated artificial saliva. Particle sizing and acoustic particle trapping data indicate that BSA supplementation dose-dependently improves viral survivability by reducing the extent of particle evaporation. These data suggest that our viral preservation medium may facilitate a lower-cost alternative to artificial saliva for future applied aerobiology studies. IMPORTANCE We have identified common and inexpensive lab reagents that confer increased aerosol survivability on phi6 and other phages. Our results suggest that soluble protein is a key protective component in nebulizing medium. Protein supplementation likely reduces exposure of the phage to the air-water interface by reducing the extent of particle evaporation. These findings will be useful for applications in which researchers wish to improve the survivability of these (and likely other) aerosolized viruses to better approximate highly transmissible airborne viruses like SARS-CoV-2.

More Details

Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations, and a broad-range multiphase equation of state

Physical Review B

Laros, James H.; Cochrane, Kyle C.; Knudson, Marcus D.; Ao, Tommy A.; Blada, Caroline B.; Jackson, Jerry; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward; Crockett, Scott D.

Titanium alloys are used in a large array of applications. In this work we focus our attention on the most used alloy, Ti-6Al-4V (Ti64), which has excellent mechanical and biocompatibility properties with applications in aerospace, defense, biomedical, and other fields. Here we present high-fidelity experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa. We use the data to validate our ab initio molecular dynamics simulations and to develop a highly reliable, multiphase equation of state (EOS) for Ti64, spanning a broad range of temperature and pressures. The first-principles simulations show very good agreement with Z data and with previous three-stage gas gun data from Sandia's STAR facility. The resulting principal Hugoniot and the broad-range EOS and phase diagram up to 10 TPa and 105 K are suitable for use in shock experiments and in hydrodynamic simulations. The high-precision experimental results and high-fidelity simulations demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modeled.

More Details

2023 Annual Report of Available Drawdowns for Each Oil Storage Cavern in the Strategic Petroleum Reserve

Hart, David B.

DOE maintains an up-to-date documentation of the number of available full drawdowns of each of the caverns at the U.S. Strategic Petroleum Reserve (SPR). This information is important for assessing the SPR’s ability to deliver oil to domestic oil companies expeditiously if national or world events dictate a rapid sale and deployment of the oil reserves. Sandia was directed to develop and implement a process to continuously assess and report the evolution of drawdown capacity, the subject of this report. This report covers impacts on drawdown availability due to SPR operations during Calendar Year 2022. A cavern has an available drawdown if, after that drawdown, the long-term stability of the cavern, the cavern field, or the oil quality are not compromised. Thus, determining the number of available drawdowns requires the consideration of several factors regarding cavern and wellbore integrity and stability, including stress states caused by cavern geometry and operations, salt damage caused by dilatant and tensile stresses, the effect of enhanced creep on wellbore integrity, and the sympathetic stress effect of operations on neighboring caverns. Finite-element geomechanical models have been used to determine the stress states in the pillars following successive drawdowns. By computing the tensile and dilatant stresses in the salt, areas of potential structural instability can be identified that may represent red flags for additional drawdowns. These analyses have found that many caverns will maintain structural integrity even when grown via drawdowns to dimensions resulting in a pillar-to-diameter ratio of less than 1.0. The analyses have also confirmed that certain caverns should only be completely drawn down one time. As the SPR caverns are utilized and partial drawdowns are performed to remove oil from the caverns (e.g., for oil sales, purchases, or exchanges authorized by the Congress or the President), the changes to the cavern caused by these procedures must be tracked and accounted for so that an ongoing assessment of the cavern’s drawdown capacity may be continued. A methodology for assessing and tracking the available drawdowns for each cavern is reiterated. This report is the latest in a series of annual reports, and it includes the baseline available drawdowns for each cavern, and the most recent assessment of the evolution of drawdown expenditures. A total of 222 million barrels of oil were released in calendar-year 2022. A nearly-equal amount of raw water was injected, resulting in an estimated 34 million barrels of cavern leaching. Twenty caverns have now expended a full drawdown. Cavern BC 18 has expended all its baseline available drawdowns, and has no drawdowns remaining. Cavern BM 103 has expended one of its two baseline drawdowns, and is now a single-drawdown cavern. All other caverns with an expenditure went from at-least-5 to at-least-4 remaining drawdowns.

More Details

Industrial PLC Network Modeling and Parameter Identification Using Sensitivity Analysis and Mean Field Variational Inference

Sensors

Ching, David C.; Safta, Cosmin S.; Reichardt, Thomas A.; Wonnacott, Raelynn; Rashkin, Lee; Chilleri, John

A multiple input multiple output (MIMO) power line communication (PLC) model for industrial facilities was developed that uses the physics of a bottom-up model but can be calibrated like top-down models. The PLC model considers 4-conductor cables (three-phase conductors and a ground conductor) and has several load types, including motor loads. The model is calibrated to data using mean field variational inference with a sensitivity analysis to reduce the parameter space. The results show that the inference method can accurately identify many of the model parameters, and the model is accurate even when the network is modified.

More Details

Multi-fidelity microstructure-induced uncertainty quantification by advanced Monte Carlo methods

Materialia

Laros, James H.; Robbe, Pieterjan; Lim, Hojun L.

Quantifying uncertainty associated with the microstructure variation of a material can be a computationally daunting task, especially when dealing with advanced constitutive models and fine mesh resolutions in the crystal plasticity finite element method (CPFEM). Numerous studies have been conducted regarding the sensitivity of material properties and performance to the mesh resolution and choice of constitutive model. However, a unified approach that accounts for various fidelity parameters, such as mesh resolutions, integration time-steps and constitutive models simultaneously is currently lacking. This paper proposes a novel uncertainty quantification (UQ) approach for computing the properties and performance of homogenized materials using CPFEM, that exploits a hierarchy of approximations with different levels of fidelity. In particular, we illustrate how multi-level sampling methods, such as multi-level Monte Carlo (MLMC) and multi-index Monte Carlo (MIMC), can be applied to assess the impact of variations in the microstructure of polycrystalline materials on the predictions of homogenized materials properties. We show that by adaptively exploiting the fidelity hierarchy, we can significantly reduce the number of microstructures required to reach a certain prescribed accuracy. Finally, we show how our approach can be extended to a multi-fidelity framework, where we allow the underlying constitutive model to be chosen from either a phenomenological plasticity model or a dislocation-density-based model.

More Details

Enabling Floating Offshore VAWT Design by Coupling OWENS and OpenFAST

Energies

Moore, Kevin R.; Ennis, Brandon L.; Jonkman, Jason; Mendoza, Nicole R.; Platt, Andrew; Devin, Michael C.

Vertical-axis wind turbines (VAWTs) have a long history, with a wide variety of turbine archetypes that have been designed and tested since the 1970s. While few utility-scale VAWTs currently exist, the placement of the generator near the turbine base could make VAWTs advantageous over tradition horizontal-axis wind turbines for floating offshore wind applications via reduced platform costs and improved scaling potential. However, there are currently few numerical design and analysis tools available for VAWTs. One existing engineering toolset for aero-hydro-servo-elastic simulation of VAWTs is the Offshore Wind ENergy Simulator (OWENS), but its current modeling capability for floating systems is non-standard and not ideal. This article describes how OWENS has been coupled to several OpenFAST modules to update and improve modeling of floating offshore VAWTs and discusses the verification of these new capabilities and features. The results of the coupled OWENS verification test agree well with a parallel OpenFAST simulation, validating the new modeling and simulation capabilities in OWENS for floating VAWT applications. These developments will enable the design and optimization of floating offshore VAWTs in the future.

More Details

Flammability and dispersion of tritium in confined release scenarios

Shurtz, Randy S.; Brown, Alexander B.; Takahashi, Lynelle K.

Ignition of a flammable tritium-air mixture is the most probable means to produce the water form (T2O or HTO), which is more easily absorbed by living tissue and is hence ~10,000 times more hazardous to human health when uptake occurs compared to the gaseous form (T2 or HT; per Mishima and Steele, 2002). Tritium-air mixtures with T2 concentrations below 4 mol% are considered sub-flammable and will not readily convert to the more hazardous water form. It is therefore desirable from a safety perspective to understand the dispersion behavior of tritium under different release conditions, especially since tritium is often stored in quantities and pressures much lower than is typical for normal hydrogen. The formation of a flammable layer at the ceiling is a scenario of particular concern because the rate of dispersion to nonflammable conditions is slowest in this configuration, which maximizes the time window over which the flammable tritium may encounter an ignition source. This report describes the processes of buoyant rise and dispersion of tritium. Accumulation of flammable concentrations of tritium next to the ceiling is a common safety concern for hydrogen, but this situation can only occur if dispersion rates are slow with respect to rates of release and rise. Theory and simulations demonstrate that buoyancy does not cause regions with flammable concentrations to form within buildings from sources that have previously been mixed to sub-flammable concentrations. A simulated series of tritium release events with their associated dispersion behavior are reported herein; these simulations apply computational fluid dynamics to rooms with three different ceiling heights and a variety of tritium release rates. Safety related quantities from these simulations are reported, including the mass and volume of tritium occurring in a flammable mixture, the presence or absence of a flammable layer at the ceiling, and the time required for dispersion to nonflammable conditions after the end of the tritium release event. These safety metrics are influenced by the magnitude and rate of the tritium release with respect to the air volume in the room and also the momentum of the plume or jet with respect to the ceiling height. Several screening criteria are recommended to assess whether a specific tritium release scenario is likely to form a flammable layer at the ceiling. The methods and results in this modeling study have applicability to explosion safety analysis for other buoyant flammable gases, including the lighter isotopes of hydrogen.

More Details

NSE workplace of the future: Enabling a LPS ready workforce

Keller, Elizabeth J.; Landis, Lynette; Baker, Brent; Bowen, Dan; Carlson, Nils; Crone, Brian; Danielson, Tom; Fliermans, Matthew; Gupta, Rajan; Howieson, Susannah; Kelly, Rand; Kennedy, Ryan; Knepper, Paula; Lanier, Andrekka (Aj); Lennon, Sarah; Mallin, Monte; Mohagheghi, Amir H.; Orr, Marilee; Reed, Danielle; Riley, David; Stevens, Noah; Templeton, Dennise; Williams, Brandon; Wolf, Ambrose

The future mission success of the Nuclear Security Enterprise (NSE) relies on our workforce and our workplace. The 2022 Nuclear Posture Review notes that “the health of the enterprise depends critically on recruiting and retaining a skilled and diverse workforce” and the 2022 National Nuclear Security Administration (NNSA) Strategic Vision articulates a commitment to “recruit, invest in, and nourish a high-performing, diverse, and flexible workforce that can meet the unique policy, technical, and leadership needs of our mission today and well into the future.”

More Details

Hardware-in-the-loop testing of a hydraulic wave energy power take-off system

Coe, Ryan G.; Leon Quiroga, Jorge A.; Bacelli, Giorgio B.; Spencer, Steven; Spinneken, Johannes; Gallegos-Patterson, D.

This report describes testing conducted related to the development of a “hydrostatic power takeoff” (HPTO) system for a wave energy converter. Tests were conducted with an experimental electric motor rig to provide preliminary results and de-risk future testing. Efficiency mapping tests were conducted as well as hardware-in-the-loop (HIL) testing. The results of the efficiency mapping tests provide good insight into how to systematically perform efficiency mapping tests. The HIL testing indicates good overall performance of the system and provides a stepping stone towards more complete system tests in the future.

More Details

Surrogate-based optimization for variational quantum algorithms

Physical Review A

Shaffer, Ryan M.; Laros, James H.; Sarovar, Mohan S.

Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers. The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit execution. One path for improving the performance of these algorithms is to enhance the classical optimization technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using a few experimental measurements, and then performing parameter optimization using these models as opposed to the original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through application to the quantum approximate optimization algorithm and preparation of ground states for molecules, we demonstrate the superiority of surrogate-based optimization over commonly used optimization techniques for variational algorithms.

More Details

Implications of Fatigue-Crack Healing in Nanocrystalline Metals [Slides]

Boyce, Brad B.; Barr, Christopher M.; Duong, Ta; Bufford, Daniel C.; Molkeri, A.; Heckman, Nathan H.; Adams, David L.; Hattar, Khalid M.; Demkowicz, Michael J.

Under high-cycle fatigue conditions, a fatigue crack in nanocrystalline Pt was observed to undergo healing. The healing appears to occur by cold welding, facilitated by grain boundary migration, and also by local closure stresses. The healing may help explain several observations: role of air (or vacuum) on fatigue life, impeded subsurface fatigue cracking, apparent flaw healing in sub-critical cycling of ceramics, the existence of a fatigue threshold, and the role of vacuum on the fatigue threshold.

More Details

Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm-2

ACS Applied Energy Materials

Hill, Ryan; Peretti, Amanda S.; Small, Leo J.; Spoerke, Erik D.; Cheng, Yang T.

High-conductivity solid electrolytes, such as the Na superionic conductor, NaSICON, are poised to play an increasingly important role in safe, reliable battery-based energy storage, enabling advanced sodium-based batteries. Coupled demands of increased current density (≥0.1 A cm-2) and low-temperature (<200 °C) operation, combined with increased discharge times for long-duration storage (>12 h), challenge the limitations of solid electrolytes. Here, we explore the penetration of molten sodium into NaSICON at high current densities. Previous studies of β″-alumina proposed that Poiseuille pressure-driven cracking (mode I) and recombination of ions and electrons within the solid electrolyte (mode II) are the two main mechanisms for Na penetration, but a comprehensive study of Na penetration in NaSICON is necessary, particularly at high current density. To further understand these modes, this work employs unidirectional galvanostatic testing of Na|NaSICON|Na symmetric cells at 0.1 A cm-2 over 23 h at 110 °C. While galvanostatic testing shows a relatively constant yet increasingly noisy voltage profile, electrochemical impedance spectroscopy (EIS) reveals a significant decrease in cell impedance correlated with significant sodium penetration, as observed in scanning electron microscopy (SEM). Further SEM analysis of sodium accumulation within NaSICON suggests that mode II failure may be far more prevalent than previously considered. Further, these findings suggest that total (dis)charge density (mAh cm-2), as opposed to current density (mA cm-2), may be a more critical parameter when examining solid electrolyte failure, highlighting the challenge of achieving long discharge times in batteries using solid electrolytes. Together, these results provide a better understanding of the limitations of NaSICON solid electrolytes under high current and emphasize the need for improved electrode-electrolyte interfaces.

More Details

IER305: Molybdenum Sleeve Experiments in the Sandia Critical Experiments Facility [Slides]

Harms, Gary A.; Laros, James H.

This presentation is on the Molybdenum (Mo) sleeve experiments at the Sandia Critical Experiments Facility. The Institut de Radioprotection et de Sûreté Nucléaire (IRSN) performed the preliminary design of the experiment. IRSN performed the final nuclear design of the experiment. Sandia performed the detailed design of the experiment to make it work in the critical assembly and Sandia also oversaw the fabrication and installation of the hardware. The slides include cutaway and overall views and a look into the results.

More Details

IER-523: Design of a UO2-BeO Critical Experiment at Sandia [Slides]

Cook, William M.; Lutz, Elijah L.; Laros, James H.; Raster, Ashley R.; Cole, James R.; Harms, Gary A.; Miller, John A.

This lecture is on the design of a Uranium Dioxide-Beryllium Oxide UO2-BeO Critical Experiment at Sandia. This presentation provides background info on the Annular Core Research Reactor (ACRR). Additionally, this presentation shows experimental and alternative designs and concludes with a sensitivity analysis.

More Details

Controllable Phase Transition Properties in VO2 Films via Metal-Ion Intercalation

Nano Letters

Lu, Ping L.

VO2 has shown great promise for sensors, smart windows, and energy storage devices, because of its drastic semiconductor-to-metal transition (SMT) near 340 K coupled with a structural transition. To push its application toward room-temperature, effective transition temperature (Tc) tuning in VO2 is desired. In this study, tailorable SMT characteristics in VO2 films have been achieved by the electrochemical intercalation of foreign ions (e.g., Li ions). By controlling the relative potential with respect to Li/Li+ during the intercalation process, Tc of VO2 can be effectively and systematically tuned in the window from 326.7 to 340.8 K. The effective Tc tuning could be attributed to the observed strain and lattice distortion and the change of the charge carrier density in VO2 introduced by the intercalation process. This demonstration opens up a new approach in tuning the VO2 phase transition toward room-temperature device applications and enables future real-time phase change property tuning.

More Details

IER 441: Experiments to Measure the Effect of Tantalum on Critical Systems (SNL/ORNL) [Slides]

Laros, James H.; Harms, Gary A.; Lutz, Elijah L.; Chapa, Agapito C.

This presentation provides information on the experiments to measure the effect of Tantalum (Ta) on critical systems. This talk presents details on the Sandia Critical Experiments Program with the Seven Percent Critical Experiment (7uPCX) and the Burnup Credit Critical Experiment (BUCCX). The presentation highlights motivations, experiment design, and evaluations and publications.

More Details

Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling

Geoscientific Model Development

Gruber, Anthony; Gunzburger, Max; Ju, Lili; Wang, Zhu; Lan, Rihui

Uncertainties in an output of interest that depends on the solution of a complex system (e.g., of partial differential equations with random inputs) are often, if not nearly ubiquitously, determined in practice using Monte Carlo (MC) estimation. While simple to implement, MC estimation fails to provide reliable information about statistical quantities (such as the expected value of the output of interest) in application settings such as climate modeling, for which obtaining a single realization of the output of interest is a costly endeavor. Specifically, the dilemma encountered is that many samples of the output of interest have to be collected in order to obtain an MC estimator that has sufficient accuracy - so many, in fact, that the available computational budget is not large enough to effect the number of samples needed. To circumvent this dilemma, we consider using multifidelity Monte Carlo (MFMC) estimation which leverages the use of less costly and less accurate surrogate models (such as coarser grids, reduced-order models, simplified physics, and/or interpolants) to achieve, for the same computational budget, higher accuracy compared to that obtained by an MC estimator - or, looking at it another way, an MFMC estimator obtains the same accuracy as the MC estimator at lower computational cost. The key to the efficacy of MFMC estimation is the fact that most of the required computational budget is loaded onto the less costly surrogate models so that very few samples are taken of the more expensive model of interest. We first provide a more detailed discussion about the need to consider an alternative to MC estimation for uncertainty quantification. Subsequently, we present a review, in an abstract setting, of the MFMC approach along with its application to three climate-related benchmark problems as a proof-of-concept exercise. Copyright:

More Details

Comprehensive Kinetics on the C7H7 Potential Energy Surface under Combustion Conditions

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Aliod, Carles; Michelsen, Hope A.; Najm, H.N.; Zador, Judit Z.

The automated kinetics workflow code, KinBot, was used to explore and characterize the regions of the C7H7 potential energy surface that are relevant to combustion environments and especially soot inception. We first explored the lowest-energy region, which includes the benzyl, fulvenallene + H, and cyclopentadienyl + acetylene entry points. We then expanded the model to include two higher-energy entry points, vinylpropargyl + acetylene and vinylacetylene + propargyl. The automated search was able to uncover the pathways from the literature. In addition, three important new routes were discovered: a lower-energy pathway connecting benzyl with vinylcyclopentadienyl, a decomposition mechanism from benzyl that results in side-chain hydrogen atom loss to produce fulvenallene + H, and shorter and lower energy routes to the dimethylene-cyclopentenyl intermediates. We systematically reduced the extended model to a chemically relevant domain composed of 63 wells, 10 bimolecular products, 87 barriers, and 1 barrierless channel and constructed a master equation using the CCSD(T)-F12a/cc-pVTZ//ωB97X-D/6-311++G(d,p) level of theory to provide rate coefficients for chemical modeling. Our calculated rate coefficients show excellent agreement with measured ones. We also simulated concentration profiles and calculated branching fractions from the important entry points to provide an interpretation of this important chemical landscape.

More Details

Multi-mode quasi-static excitation for systems with nonlinear joints

Mechanical Systems and Signal Processing

Singh, Aabhas S.; Kuether, Robert J.; Allen, Matthew S.

Finite element models can be used to model and predict the hysteresis and energy dissipation exhibited by nonlinear joints in structures. As a result of the nonlinearity, the frequency and damping of a mode is dependent on excitation amplitude, and when the modes remain uncoupled, quasi-static modal analysis has been shown to efficiently predict this behavior. However, in some cases the modes have been observed to couple such that the frequency and damping of one mode is dependent on the amplitude of other modes. To model the interactions between modes, one must integrate the dynamic equations in time, which is several orders of magnitude more expensive than quasi-static analysis. This work explores an alternative where quasi-static forces are applied in the shapes of two or more modes of vibration simultaneously, and the resulting load–displacement curves are used to deduce the effect of other modes on the effective frequency and damping of the mode in question. This methodology is demonstrated on a simple 2D cantilever beam structure with a single bolted joint which exhibits micro-slip nonlinearity over a range of vibration amplitudes. The predicted frequency and damping are compared with those extracted from a few expensive dynamic simulations of the structure, showing that the quasi-static approach produces reasonable albeit highly conservative bounds on the observed dynamics. This framework is also demonstrated on a 3D structure where dynamic simulations are infeasible.

More Details

Decoupling the effects of texture and composition on magnetic properties of Fe-Si sheet processed by shear deformation

Journal of Magnetism and Magnetic Materials

Kustas, Andrew K.; Mann, James B.; Trumble, Kevin P.; Chandrasekar, Srinivasan

Soft magnetic Fe-Si alloys (electrical steels) possess exceptional functional properties such as high permeability, low coercivity, and low core loss, which generally improve with increasing Si content in the alloy. However, Fe-Si alloys containing > 3.5 wt% Si are also characterized by prohibitively low workability and poor ductility that have prevented their efficient commercial production in sheet form by rolling. This has limited their use for improving efficiency of motors and transformers. In this study, hybrid cutting-extrusion (HCE) is used as a single-step thermomechanical processing method to produce continuous Fe-Si alloy sheet with high Si compositions of 4 wt% to 6.5 wt%. HCE sheet is shown to have a homogeneous annealed grain structure and simple-shear crystallographic textures. By controlling the HCE deformation path, varied crystallographic shear textures are created in the sheet. Quasi-static magnetic properties of the HCE sheet are evaluated to decouple the effects of sheet texture and Si composition on resultant permeability and coercivity properties. The results suggest that HCE, with suitable process scaling, is a viable route for production of high-Si content electrical steel sheet for next-generation motors and transformers.

More Details

Efficacy of vibro-impact energy harvesting absorbers on controlling dynamical systems under vortex-induced vibrations and base excitation

Ocean Engineering

Alvis, Tyler H.; Abdelkefi, Abdessattar

Here this study investigates improving the efficacy of an energy harvesting absorber's ability to control a structure under vortex-induced vibrations, base excitation, and a combination of the two by including mechanical amplitude stoppers. The nonlinear reduced-order model is developed through modifying trilinear spring models to represent the impact forces, a modified van der Pol oscillator to represent the forcing due to the vortex-induced vibrations and using the Euler-Lagrange principle to express the equations of motion. It is seen that a soft stopper stiffness and a 5mm gap performs the most effectively of increasing the power generated from the absorber while still greatly reducing the primary structure's amplitude. By changing the stopper's location towards the middle of the energy harvesting absorber, the large effects of the impact forces are reduced and improves the efficacy of medium and hard stopper stiffnesses to generate near the amount of power the soft stopper does, while greatly improving the control of the primary structure. When the system is under combined loadings, the large oscillations of the synchronization region cause the effective configuration to be that of a 27.5 mm gap with soft stiffnesses. The results shows that medium stiffness stoppers with small gaps generate large aperiodic regions due to the high impact force. When the oscillations are close to the stoppers, the beating phenomenon is observed and is not overpowered by the vibro-impact force.

More Details

Hydrophobic Nanoconfinement Enhances CO2 Conversion to H2CO3

Journal of Physical Chemistry Letters

Ho, Tuan A.; Dasgupta, Nabankur; Rempe, Susan R.; Wang, Yifeng

Understanding the formation of H2CO3 in water from CO2 is important in environmental and industrial processes. Although numerous investigations have studied this reaction, the conversion of CO2 to H2CO3 in nanopores, and how it differs from that in bulk water, has not been understood. We use ReaxFF metadynamics molecular simulations to demonstrate striking differences in the free energy of CO2 conversion to H2CO3 in bulk and nanoconfined aqueous environments. We find that nanoconfinement not only reduces the energy barrier but also reverses the reaction from endothermic in bulk water to exothermic in nanoconfined water. Also, charged intermediates are observed more often under nanoconfinement than in bulk water. Stronger solvation and more favorable proton transfer with increasing nanoconfinement enhance the thermodynamics and kinetics of the reaction. Here our results provide a detailed mechanistic understanding of an important step in the carbonation process, which depends intricately on confinement, surface chemistry, and CO2 concentration.

More Details

In situ characterization of material extrusion printing by near-infrared spectroscopy

Additive Manufacturing

Linde, Carl E.; Celina, Mathias C.; Appelhans, Leah A.; Roach, Devin J.; Cook, Adam W.

Material extrusion printing of reactive resins and inks present a unique challenge due to the time-dependent nature of the rheological and chemical properties they possess. As a result, careful print optimization or process control is important to obtain consistent, high quality prints via additive manufacturing. We present the design and use of a near-infrared (NIR) flow through cell for in situ chemical monitoring of reactive resins during printing. Differences between in situ and off-line benchtop measurements are presented and highlight the need for in-line monitoring capability. Additionally, in-line extrusion force monitoring and off-line post inspection using machine vision is demonstrated. By combining NIR and extrusion force monitoring, it is possible to follow cure reaction kinetics and viscosity changes during printing. When combined with machine vision, the ability to automatically identify and quantify print artifacts can be incorporated on the printing line to enable real-time, artificial intelligence-assisted quality control of both process and product. Together, these techniques form the building blocks of an optimized closed-loop process control strategy when complex reactive inks must be used to produce printed hardware.

More Details

Development of an in situ ion irradiation scanning electron microscope

Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms

Lang, Eric J.; Heckman, Nathan H.; Clark, Trevor C.; Derby, Benjamin K.; Barrios Santos, Alejandro J.; Monterrosa, Anthony M.; Barr, Christopher M.; Buller, Daniel L.; Stauffer, D.D.; Li, N.; Boyce, Brad B.; Briggs, Samuel B.; Hattar, Khalid M.

An in situ ion irradiation scanning electron microscope (I3SEM) has been developed, installed, and integrated into the Ion Beam Laboratory at Sandia National Laboratories. The I3SEM facility combines a field emission, variable pressure, scanning electron microscope, a 6 MV tandem accelerator, high flux low energy ion source, an 808 nm-wavelength laser, and multiple stages to control the thermal and mechanical state of the sample observed. The facility advances real-time understanding of materials evolution under combined environments at the mesoscale. As highlighted in multiple examples, this unique combination of tools is optimized for studying mesoscale material response in overlapping extreme environments, allowing for simultaneous ion irradiation, implantation, laser bombardment, conductive heating, cooling, and mechanical deformation.

More Details

Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-Transfer particle tracking schemes

Geoscientific Model Development

Schauer, Lucas; Schmidt, Michael J.; Engdahl, Nicholas B.; Pankavich, Stephen D.; Benson, David A.; Bolster, Diogo

Lagrangian particle tracking schemes allow a wide range of flow and transport processes to be simulated accurately, but a major challenge is numerically implementing the inter-particle interactions in an efficient manner. This article develops a multi-dimensional, parallelized domain decomposition (DDC) strategy for mass-Transfer particle tracking (MTPT) methods in which particles exchange mass dynamically. We show that this can be efficiently parallelized by employing large numbers of CPU cores to accelerate run times. In order to validate the approach and our theoretical predictions we focus our efforts on a well-known benchmark problem with pure diffusion, where analytical solutions in any number of dimensions are well established. In this work, we investigate different procedures for "tiling"the domain in two and three dimensions (2-D and 3-D), as this type of formal DDC construction is currently limited to 1-D. An optimal tiling is prescribed based on physical problem parameters and the number of available CPU cores, as each tiling provides distinct results in both accuracy and run time. We further extend the most efficient technique to 3-D for comparison, leading to an analytical discussion of the effect of dimensionality on strategies for implementing DDC schemes. Increasing computational resources (cores) within the DDC method produces a trade-off between inter-node communication and on-node work. For an optimally subdivided diffusion problem, the 2-D parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run-up to around 2700 cores, reducing a 5gh simulation to 8gs, while the 3-D algorithm maintains appreciable speedup up to 1700 cores.

More Details

Development of $\mathrm{AMOEBA}$ Polarizable Force Field for Rare-Earth La3+ Interaction with Bioinspired Ligands

Journal of Physical Chemistry. B

Rempe, Susan R.; Spoerke, Erik D.; Wait, Elizabeth E.; Gourary, Justin; Ren, Pengyu; Liu, Chengwen

Rare-earth metals (REMs) are crucial for many important industries, such as power generation and storage, in addition to cancer treatment and medical imaging. One promising new REM refinement approach involves mimicking the highly selective and efficient binding of REMs observed in relatively recently discovered proteins. However, realizing any such bioinspired approach requires an understanding of the biological recognition mechanisms. In this report we developed a new classical polarizable force field based on the AMOEBA framework for modeling a lanthanum ion (La3+) interacting with water, acetate, and acetamide, which have been found to coordinate the ion in proteins. The parameters were derived by comparing to high-level ab initio quantum mechanical (QM) calculations that include relativistic effects. The AMOEBA model, with advanced atomic multipoles and electronic polarization, is successful in capturing both the QM distance-dependent La3+–ligand interaction energies and experimental hydration free energy. A new scheme for pairwise polarization damping (POLPAIR) was developed to describe the polarization energy in La3+ interactions with both charged and neutral ligands. Simulations of La3+ in water showed water coordination numbers and ion–water distances consistent with previous experimental and theoretical findings. Water residence time analysis revealed both fast and slow kinetics in water exchange around the ion. This new model will allow investigation of fully solvated lanthanum ion–protein systems using GPU-accelerated dynamics simulations to gain insights on binding selectivity, which may be applied to the design of synthetic analogues.

More Details

Anisotropic optical and magnetic response in self-assembled TiN–CoFe2 nanocomposites

Materials Today Nano

Lu, Ping L.

Transition metal nitrides (e.g., TiN) have shown tremendous promise in optical metamaterials for nanophotonic devices due to their plasmonic properties comparable to noble metals and superior high temperature stability. Vertically aligned nanocomposites (VANs) offer a great platform for combining two dissimilar functional materials with a one-step deposition technique toward multifunctionality integration and strong structural/property anisotropy. Here, we report a two-phase nanocomposite design combining ferromagnetic CoFe2 nanosheets in the plasmonic TiN matrix as a new hybrid plasmonic metamaterial. The hybrid metamaterials exhibit anisotropic optical and magnetic responses, as well as a pronounced magneto-optical coupling response evidenced by Magneto-optic Kerr Effect measurement, owing to the novel vertically aligned structure. This work demonstrates a new TiN-based metamaterial with anisotropic properties and multifunctionality toward light polarization modulation, optical switching, and integrated optics.

More Details

Reactive Separations of CO/CO2 mixtures over Ru–Co Single Atom Alloys

ACS Catalysis

Liu, Renjie; El Berch, John N.; House, Stephen D.; Meil, Samuel W.; Mpourmpakis, Giannis; Porosoff, Marc D.

Reactive separations of CO/CO2 mixtures are a promising pathway to lower the energy requirement of CO2 hydrogenation to chemicals and fuels, with applications in the U.S. Navy’s seawater-to-fuel process. With the CO/CO2 feedstock, a challenge is activating CO to produce heavier hydrocarbons while preventing CO2 methanation, requiring low-temperature Fischer-Tropsch synthesis (FTS) catalysts. In this work, we demonstrate that a Ru–Co single atom alloy (SAA) catalyst produces C5+ hydrocarbons at a rate of 11.7 μmol/s/g-cobalt (hexane basis) in a 50/50 CO/CO2 stream with ≤1% CO2 conversion. The reaction operates at a relatively low temperature (200 °C) and high gas hourly space velocity (GHSV: 84,000 mL/g/h) that is compatible with the upstream reverse water-gas shift reaction. Detailed experiments, catalyst characterizations, and density functional theory (DFT) calculations have been conducted to understand the active phase, the role of the Ru dopant, and catalyst restructuring that occurs at elevated temperatures (>200 °C). Ru dopants are found to promote the reduction of Co species, enabling catalytic activity for CO hydrogenation without pre-reduction, but may not enhance the FTS activity or desired C5+ hydrocarbon selectivity.

More Details

Quadratic pseudospectrum for identifying localized states

Journal of Mathematical Physics

Cerjan, Alexander W.; Loring, Terry A.; Vides, Fredy

Here we examine the utility of the quadratic pseudospectrum for understanding and detecting states that are somewhat localized in position and energy, in particular, in the context of condensed matter physics. Specifically, the quadratic pseudospectrum represents a method for approaching systems with incompatible observables {Aj|1 ≤ j ≤ d} as it minimizes collectively the errors $\parallel$Ajv - λjv$\parallel$ while defining a joint approximate spectrum of incompatible observables. Moreover, we derive an important estimate relating the Clifford and quadratic pseudospectra. Finally, we prove that the quadratic pseudospectrum is local and derive the bounds on the errors that are incurred by truncating the system in the vicinity of where the pseudospectrum is being calculated.

More Details

Simulations for Planning of Liquid Hydrogen Spill Test

Energies

Blaylock, Myra L.; Hecht, Ethan S.; Mangala Gitushi, Kevin

In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.

More Details

Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications

Journal of Computing and Information Science in Engineering

Laros, James H.; Maupin, Kathryn A.; Rodgers, Theron R.

Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting model requires significantly less data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on three different material datasets, where one experimental and two computational datasets are used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data are scarce and noisy, and monotonicity is supported by strong physical evidence.

More Details

Molecular Dynamics Simulation of Pore-Size Effects on Gas Adsorption Kinetics in Zeolites

Clays and Clay Minerals

Greathouse, Jeffery A.; Paul, Matthew J.; Xu, Guangping X.; Powell, Matthew D.

Strong gas-mineral interactions or slow adsorption kinetics require a molecular-level understanding of both adsorption and diffusion for these interactions to be properly described in transport models. In this combined molecular simulation and experimental study, noble gas adsorption and mobility is investigated in two naturally abundant zeolites whose pores are similar in size (clinoptilolite) and greater than (mordenite) the gas diameters. Simulated adsorption isotherms obtained from grand canonical Monte Carlo simulations indicate that both zeolites can accommodate even the largest gas (Rn). However, gas mobility in clinoptilolite is significantly hindered at pore-limiting window sites, as seen from molecular dynamics simulations in both bulk and slab zeolite models. Experimental gas adsorption isotherms for clinoptilolite confirm the presence of a kinetic barrier to Xe uptake, resulting in the unusual property of reverse Kr/Xe selectivity. Finally, a kinetic model is used to fit the simulated gas loading profiles, allowing a comparison of trends in gas diffusivity in the zeolite pores.

More Details

Notes on Regression Analysis for Radar Parameter Estimation

Doerry, Armin; Bickel, Douglas L.

A fundamental task of radar, beyond merely detecting a target, is to estimate some parameters associated with it. For example, this might include range, direction, velocity, etc. In any case, multiple measurements, often noisy, need to be processed to yield a ‘best estimate’ of the parameter. A common mathematical method for doing so is called “Regression” analysis. The goal is to minimize the expected squared error in the estimate. Even when alternate algorithms are considered, the least s

More Details

A Multicontinuum-Theory-Based Approach to the Analysis of Fiber-Reinforced Polymer Composites with Degraded Stiffness and Strength Properties Due to Moisture Absorption

Journal of Marine Science and Engineering

Anderson, Evan M.; Gunawan, Budi G.; Nicholas, James N.; Ingraham, Mathew D.; Hernandez-Sanchez, Bernadette A.

Marine energy generation technologies such as wave and tidal power have great potential in meeting the need for renewable energy in the years ahead. Yet, many challenges remain associated with marine-based systems because of the corrosive environment. Conventional materials like metals are subject to rapid corrosive breakdown, crippling the lifespan of structures in such environments. Fiber-reinforced polymer composites offer an appealing alternative in their strength and corrosion resistance, but can experience degradation of mechanical properties as a result of moisture absorption. An investigation is conducted to test the application of a technique for micromechanical analysis of composites, known as multicontinuum theory and demonstrated in past works, as a mechanism for predicting the effects of prolonged moisture absorption on the performance of fiber-reinforced composites. Experimental tensile tests are performed on composite coupons with and without prolonged exposure to a salt water solution to obtain stiffness and strength properties. Multicontinuum theory is applied in conjunction with micromechanical modeling to deduce the effects of moisture absorption on the behavior of constituent materials within the composites. The results are consistent with experimental observations when guided by known mechanisms and trends from previous studies, indicating multicontinuum theory as a potentially effective tool in predicting the long-term performance of composites in marine environments.

More Details
Results 2001–2200 of 96,771
Results 2001–2200 of 96,771