Publications

16 Results

Search results

Jump to search filters

Effects of hydrogen isotope type on oxidation rates for trace releases

Fire Safety Journal

Shurtz, Randy S.; Brown, Alexander B.; Takahashi, Lynelle K.; Coker, Eric N.

The fraction of tritium converted to the water form in a fire scenario is one of the metrics of greatest interest for radiological safety assessments. The conversion fraction is one of the prime variables contributing to the hazard assessment. This paper presents measurements of oxidation rates for the non-radioactive hydrogen isotopes (protium and deuterium) at sub-flammable concentrations that are typical of many of the most likely tritium release scenarios. These measurements are fit to a simplified 1-step kinetic rate expression, and the isotopic trends for protium and deuterium are extrapolated to produce a model appropriate for tritium. The effects of the new kinetic models are evaluated via CFD simulations of an ISO-9705 standard room fire that includes a trace release of hydrogen isotope (tritium), illustrating the high importance of the correct (measurement-based) kinetics to the outcome of the simulated conversion.

More Details

Flammability and dispersion of tritium in confined release scenarios

Shurtz, Randy S.; Brown, Alexander B.; Takahashi, Lynelle K.

Ignition of a flammable tritium-air mixture is the most probable means to produce the water form (T2O or HTO), which is more easily absorbed by living tissue and is hence ~10,000 times more hazardous to human health when uptake occurs compared to the gaseous form (T2 or HT; per Mishima and Steele, 2002). Tritium-air mixtures with T2 concentrations below 4 mol% are considered sub-flammable and will not readily convert to the more hazardous water form. It is therefore desirable from a safety perspective to understand the dispersion behavior of tritium under different release conditions, especially since tritium is often stored in quantities and pressures much lower than is typical for normal hydrogen. The formation of a flammable layer at the ceiling is a scenario of particular concern because the rate of dispersion to nonflammable conditions is slowest in this configuration, which maximizes the time window over which the flammable tritium may encounter an ignition source. This report describes the processes of buoyant rise and dispersion of tritium. Accumulation of flammable concentrations of tritium next to the ceiling is a common safety concern for hydrogen, but this situation can only occur if dispersion rates are slow with respect to rates of release and rise. Theory and simulations demonstrate that buoyancy does not cause regions with flammable concentrations to form within buildings from sources that have previously been mixed to sub-flammable concentrations. A simulated series of tritium release events with their associated dispersion behavior are reported herein; these simulations apply computational fluid dynamics to rooms with three different ceiling heights and a variety of tritium release rates. Safety related quantities from these simulations are reported, including the mass and volume of tritium occurring in a flammable mixture, the presence or absence of a flammable layer at the ceiling, and the time required for dispersion to nonflammable conditions after the end of the tritium release event. These safety metrics are influenced by the magnitude and rate of the tritium release with respect to the air volume in the room and also the momentum of the plume or jet with respect to the ceiling height. Several screening criteria are recommended to assess whether a specific tritium release scenario is likely to form a flammable layer at the ceiling. The methods and results in this modeling study have applicability to explosion safety analysis for other buoyant flammable gases, including the lighter isotopes of hydrogen.

More Details

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.

More Details

AN EXPERIMENTAL AND MODELING STUDY OF OXIDATION OF HYDROGEN ISOTOPES AT TRACE CONCENTRATIONS

Proceedings of the Thermal and Fluids Engineering Summer Conference

Shurtz, Randy S.; Coker, Eric N.; Brown, Alexander B.; Takahashi, Lynelle K.

In accident scenarios involving release of tritium during handling and storage, the level of risk to human health is dominated by the extent to which radioactive tritium is oxidized to the water form (T2O or THO). At some facilities, tritium inventories consist of very small quantities stored at sub-atmospheric pressure, which means that tritium release accident scenarios will likely produce concentrations in air that are well below the lower flammability limit. It is known that isotope effects on reaction rates should result in slower oxidation rates for heavier isotopes of hydrogen, but this effect has not previously been quantified for oxidation at concentrations well below the lower flammability limit for hydrogen. This work describes hydrogen isotope oxidation measurements in an atmospheric tube furnace reactor. These measurements consist of five concentration levels between 0.01% and 1% protium or deuterium and two residence times. Oxidation is observed to occur between about 550°C and 800°C, with higher levels of conversion achieved at lower temperatures for protium with respect to deuterium at the same volumetric inlet concentration and residence time. Computational fluid dynamics simulations of the experiments were used to customize reaction orders and Arrhenius parameters in a 1-step oxidation mechanism. The trends in the rates for protium and deuterium are extrapolated based on guidance from literature to produce kinetic rate parameters appropriate for tritium oxidation at low concentrations.

More Details

Evaluating T2 Conversion to Tritiated Water under Ambient Conditions - Case Study

Takahashi, Lynelle K.; Jarek, Russell L.

In 2015, an incident released approximately 40 Ci of T2 gas directly into the Tritium Exhaust System. Data from a bubbler system that monitored the stack effluent during the time period encompassing the accident, from 9 days prior through approximately 26 hours following the release, indicated that approximately 0.25% of the total accumulated tritium gas was in the form of tritiated water; however this value does not account for sources of tritium exhaust from other building operations and processes during the 9 days prior to this incident. Further analysis of the bubbler data around this time period considered the 9-day background contributions and shows that the actual fraction of the tritium that was released as tritiated water vapor (during and within 26 hours after the release) was likely lower than 0.1%.

More Details
16 Results
16 Results