Publications

Results 1–25 of 111

Search results

Jump to search filters

Interfacial defect reduction enhances universal power law response in Mo-SiNx granular metals

Journal of Applied Physics

Mcgarry, Michael; Gilbert, Simeon J.; Yates, Luke Y.; Meyerson, Melissa L.; Kotula, Paul G.; Laros, James H.; Sharma, Peter A.; Flicker, Jack D.; Siegal, Michael P.; Biedermann, Laura B.

Granular metals (GMs), consisting of metal nanoparticles separated by an insulating matrix, frequently serve as a platform for fundamental electron transport studies. However, few technologically mature devices incorporating GMs have been realized, in large part because intrinsic defects (e.g., electron trapping sites and metal/insulator interfacial defects) frequently impede electron transport, particularly in GMs that do not contain noble metals. Here, we demonstrate that such defects can be minimized in molybdenum-silicon nitride (Mo-SiNx) GMs via optimization of the sputter deposition atmosphere. For Mo-SiNx GMs deposited in a mixed Ar/N2 environment, x-ray photoemission spectroscopy shows a 40%-60% reduction of interfacial Mo-silicide defects compared to Mo-SiNx GMs sputtered in a pure Ar environment. Electron transport measurements confirm the reduced defect density; the dc conductivity improved (decreased) by 104-105 and the activation energy for variable-range hopping increased 10×. Since GMs are disordered materials, the GM nanostructure should, theoretically, support a universal power law (UPL) response; in practice, that response is generally overwhelmed by resistive (defective) transport. Here, the defect-minimized Mo-SiNx GMs display a superlinear UPL response, which we quantify as the ratio of the conductivity at 1 MHz to that at dc, Δ σ ω . Remarkably, these GMs display a Δ σ ω up to 107, a three-orders-of-magnitude improved response than previously reported for GMs. By enabling high-performance electric transport with a non-noble metal GM, this work represents an important step toward both new fundamental UPL research and scalable, mature GM device applications.

More Details

Granular metals with SiNx dielectrics

Nanotechnology

Gilbert, Simeon J.; Laros, James H.; Kotula, Paul G.; Rosenberg, Samantha G.; Kmieciak, Thomas G.; Mcgarry, Michael; Siegal, Michael P.; Biedermann, Laura B.

Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. Here, we demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies. We investigated SiNx as an alternative to more commonly used oxide-insulators, as SiNx-based GMs may enable high temperature applications when paired with refractory metals. Comparing Co-SiNx and Mo-SiNx GMs, we found that, in the tunneling-dominated insulating regime, Mo-SiNx had reduced metal-silicide formation and orders-of-magnitude lower conductivity. XPS measurements indicate that metal-silicide and metal-nitride formation are mitigatable concerns in Mo-SiNx. Given the metal-oxide formation seen in other GMs, SiNx is an appealing alternative for metals that readily oxidize. Furthermore, SiNx provides a path to metal-nitride nanostructures, potentially useful for various applications in plasmonics, optics, and sensing.

More Details

The effect of metal-insulator interface interactions on electrical transport in granular metals

Journal of Physics Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas G.; Biedermann, Laura B.; Siegal, Michael P.

We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds between φ = 0.4-0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details

MnSn2 and MnSn2–TiO2 nanostructured anode materials for lithium-ion batteries

Nanotechnology

Goriparti, Subrahmanyam; Mcgrath, Andrew J.; Rosenberg, Samantha G.; Siegal, Michael P.; Ivanov, Sergei A.; Harrison, Katharine L.

The high theoretical lithium storage capacity of Sn makes it an enticing anode material for Li-ion batteries (LIBs); however, its large volumetric expansion during Li–Sn alloying must be addressed. Combining Sn with metals that are electrochemically inactive to lithium leads to intermetallics that can alleviate volumetric expansion issues and still enable high capacity. Here, we present the cycling behavior of a nanostructured MnSn2 intermetallic used in LIBs. Nanostructured MnSn2 is synthesized by reducing Sn and Mn salts using a hot injection method. The resulting MnSn2 is characterized by x-ray diffraction and transmission electron microscopy and then is investigated as an anode for LIBs. The MnSn2 electrode delivers a stable capacity of 514 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. Unlike other Sn-intermetallic anodes, an activation overpotential peak near 0.9 V versus Li is present from the second lithiation and in subsequent cycles. We hypothesize that this effect is likely due to electrolyte reactions with segregated Mn from MnSn2. To prevent these undesirable Mn reactions with the electrolyte, a 5 nm TiO2 protection layer is applied onto the MnSn2 electrode surface via atomic layer deposition. The TiO2-coated MnSn2 electrodes do not exhibit the activation overpotential peak. The protection layer also increases the capacity to 612 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. This higher capacity is achieved by suppressing the parasitic reaction of Mn with the electrolyte, as is supported by x-ray photoelectron spectroscopy analysis.

More Details

Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate

Photonics Research

Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Crawford, Mary H.; Podkaminer, Jacob; Perez, Carlos P.; Siegal, Michael P.; Douglas, Erica A.; Abate, Vincent M.; Leonard, Francois L.

AlGaN-channel high electron mobility transistors (HEMTs) were operated as visible- and solar-blind photodetectors by using GaN nanodots as an optically active floating gate. The effect of the floating gate was large enough to switch an HEMT from the off-state in the dark to an on-state under illumination. This opto-electronic response achieved responsivity > 108 A/W at room temperature while allowing HEMTs to be electrically biased in the offstate for low dark current and low DC power dissipation. The influence of GaN nanodot distance from the HEMT channel on the dynamic range of the photodetector was investigated, along with the responsivity and temporal response of the floating gate HEMT as a function of optical intensity. The absorption threshold was shown to be controlled by the AlN mole fraction of the HEMT channel layer, thus enabling the same device design to be tuned for either visible- or solar-blind detection.

More Details

Correlating thermoelectric (Bi,Sb)2Te3 film electric transport properties with microstructure

Journal of Applied Physics

Siegal, Michael P.; Podkaminer, J.; Lima-Sharma, Ana L.; Sharma, Peter A.; Medlin, Douglas L.

The room temperature electronic transport properties of 1 μm thick Bi0.4Sb1.6Te3 (BST) films correlate with overall microstructural quality. Films with homogeneous composition are deposited onto fused silica substrates, capped with SiN to stop both oxidation and Te loss, and postannealed to temperatures ranging from 200 to 450 °C. BST grain sizes and (00l) orientations improve dramatically with annealing to 375 °C, with smaller increases to 450 °C. Tiny few-nanometer-sized voids in the as-deposited film grain boundaries coalesce into larger void sizes up to 300 nm with annealing to 350 °C; the smallest voids continue coalescing with annealing to 450 °C. These voids are decorated with few-nanometer-sized Sb clusters that increase in number with increasing annealing temperatures, reducing the Sb content of the remaining BST film matrix. Resistivity decreases linearly with increasing temperature over the entire range studied, consistent with improving crystalline quality. The Seebeck coefficient also improves with crystalline quality to 350 °C, above which void coalescence and reduced Sb content from the BST matrix correlate with a decrease in the Seebeck coefficient. Yet, a plateau exists for an optimal power factor between 350 and 450 °C, implying thermal stability to higher temperatures than previously reported.

More Details
Results 1–25 of 111
Results 1–25 of 111