Publications

Results 1–25 of 120

Search results

Jump to search filters

LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis

Ao, Tommy A.; Donohoe, Brendan D.; Martinez, Carianne M.; Knudson, Marcus D.; Montes de Oca Zapiain, David M.; Morgan, Dane; Rodriguez, Mark A.; Lane, James M.

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.

More Details

Molecular Dynamics of High Pressure Tin Phases I: Strength and deformation evaluations of empirical potentials [Slides]

Lane, James M.; Cusentino, Mary A.; Nebgen, Ben; Barros, Kipton M.; Shimanek, John D.; Allen, Alice; Thompson, Aidan P.; Fensin, Saryu J.

Multi-phase problems have so many more unknowns, we’d like to have a tool to constrain some open questions related to microstructure and twin & dislocation behavior. We want an atomistic scale perspective on aspects of strength. Some multi-scale questions accessible to atomistic study: What lattice-specific behavior influences dislocation production/mobility and/or twinning? Do the phase transformations wipe-out, modify or preserve grain size and orientation? Does plastic strain reset at phase transition? If so under what conditions? Tin is the material chosen for the effort because it is non-hazardous and has multiple accessible solid phases at relatively low pressures.

More Details

A compact x-ray diffraction system for dynamic compression experiments on pulsed-power generators

Review of Scientific Instruments

Ao, Tommy A.; Morgan, Dane V.; Stoltzfus, Brian S.; Austin, Kevin N.; Usher, Joshua M.; Breden, E.W.; Pacheco, Lena M.; Dean, Steven; Brown, Justin L.; Duwal, Sakun D.; Fan, Hongyou F.; Knudson, Marcus D.; Rodriguez, Mark A.; Lane, James M.

Pulsed-power generators can produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies using the magnetic loading technique. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength–strain rate dependence, structural phase transitions, and density of crystal defects, such as dislocations. Here, we present a cost-effective, compact, pulsed x-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically driven ramp compression of materials with a single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials’ community to investigate in situ dynamic phase transitions critical to equation of states. Finally, we present results using this new diagnostic to evaluate lattice compression in Zr and Al and to capture signatures of phase transitions in CdS.

More Details

High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals

MRS Bulletin

Meng, Lingyao; Duwal, Sakun D.; Lane, James M.; Ao, Tommy A.; Stoltzfus, Brian S.; Knudson, Marcus D.; Park, Changyong; Chow, Paul; Xiao, Yuming; Fan, Hongyou F.; Qin, Yang

Abstract: Here, we report the high pressure phase and morphology behavior of ordered anatase titanium dioxide (TiO2) nanocrystal arrays. One-dimensional TiO2 nanorods and nanorices were synthesized and self-assembled into ordered mesostructures. Their phase and morphological transitions at both atomic scale and mesoscale under pressure were studied using in situ synchrotron wide- and small-angle x-ray scattering (WAXS and SAXS) techniques. At the atomic scale, synchrotron WAXS reveals a pressure-induced irreversible amorphization up to 35 GPa in both samples but with different onset pressures. On the mesoscale, no clear phase transformations were observed up to 20 GPa by synchrotron SAXS. Intriguingly, sintering of TiO2 nanorods at mesoscale into nano-squares or nano-rectangles, as well as nanorices into nanowires, were observed for the first time by transmission electron microscopy. Such pressure-induced nanoparticle phase-amorphization and morphological changes provide valuable insights for design and engineering structurally stable nanomaterials. Impact statement: The high pressure behavior of nanocrystals (NCs) continues to be of interest, as previous studies have demonstrated that an externally applied pressure can serve as an efficient tool to induce structural phase transitions of NC assemblies at both the atomic scale and mesoscale without altering any chemistry by manipulating NC interatomic and interparticle distances. In addition, the high pressure generated deviatoric stress has been proven to be able to force adjacent NCs to connect and fuse into new crystalline nanostructures. Although the atomic structural evolution of TiO2 NCs under pressure has been widely investigated in the past decades, open questions remain regarding the mesoscale phase transition and morphology of TiO2 NC assemblies as a function of pressure. Therefore, in this work, systemic high pressure experiments on ordered arrays of TiO2 nanorods and nanorices were conducted by employing wide/small angle x-ray scattering techniques. The sintering of TiO2 assemblies at mesoscale into various nanostructures under pressure were revealed by transmission electron microscopy. Overall, this high pressure work fills the current gap in research on the mesoscale phase behavior of TiO2 assemblies. The observed morphology tunability attained by applying pressure opens new pathways for engineering nanomaterials and optimizing their collective properties through mechanical compression stresses. Graphical abstract: [Figure not available: see fulltext.].

More Details

Characterization of Tri-lab β-Tin (Sn)

Lim, Hojun L.; Casias, Zachary C.; Carroll, Jay D.; Battaile, Corbett C.; Lane, James M.; Fensin, Saryu

This report documents details of the microstructure and mechanical properties of -tin (Sn), that is used in the Tri-lab (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL)) collaboration project on Multi-phase Tin Strength. We report microstructural features detailing the crystallographic texture and grain morphology of as-received -tin from electron back scatter diffraction (EBSD). Temperature and strain rate dependent mechanical behavior was investigated by multiple compression tests at temperatures of 200K to 400K and strain rates of 0.0001 /s to 100 /s. Tri-lab tin showed significant temperature and strain rate dependent strength with no significant plastic anisotropy. A sample to sample material variation was observed from duplicate compression tests and texture measurements. Compression data was used to calibrate model parameters for temperature and rate dependent strength models, Johnson-Cook (JC), Zerilli-Armstrong (ZA) and Preston-Tonks-Wallace (PTW) strength models.

More Details

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Laros, James H.; Knudson, Marcus D.; Meng, Lingyao; Morgan, Dane; Pacheco, Lena M.; Qin, Yang; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; Laros, James H.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Laros, James H.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details
Results 1–25 of 120
Results 1–25 of 120