As a follow-up to our previous report on quantum sensing for safeguards, here we delve deeper into quantum-enhanced imaging & spectroscopy and address their relevance to international safeguards. Much of the approaches rely on entangled photons, a quantum phenomenon not possible with classical physics, although just correlated photons will work for some applications, such as ghost imaging. We provide a comprehensive survey of quantum approaches, including multiple entangled photon ghost imaging and spectroscopy techniques. Entangled photons for noise reduction are also described, as well as Non-Line-Of-Sight imaging, compressive techniques, and squeezed light. Of particular interest is the generation of entangled photons with large wavelength separation, such as infrared/visible entangled photon pairs. Such entangled pairs would allow interaction with objects in the IR, such as in the molecular “fingerprint” wavelength region, while the recording device captures the visible photons, thus leveraging the high efficiency and lower cost of visible detectors. Unfortunately, entangled x-ray photons are not practical, which would have been useful for safeguards to interrogate shielded materials. Entangled gamma rays are even further beyond reason. We provide our assessment for application of quantum-enhanced imaging & spectroscopy for international safeguards, including suggested improvements to existing IAEA instruments and destructive assay measurements that are done at IAEA lab facilities.
This year, we focused on completing the light squeezing and building the imaging station. In this report, we present a detailed description of a quantum imaging experiment utilizing squeezed light. The entire experimental setup has two parts, namely, the squeezing station where we produce quantum-noise squeezed light where a light quadrature (either the amplitude of the phase) has reduced quantum error below the shot noise of coherent light, and the imaging station where the squeezed light is used to image an object. The squeezing station consists of an optical parametric oscillator operating below the laser threshold. We provide the status quo and the plans for the squeezing imaging experiment.
Overall objectives of the project are: Develop a science & engineering basis for the release, ignition, and combustion behavior of hydrogen across its range of use (including high pressure and cryogenic); and, Facilitate the assessment of the safety (risk) of hydrogen systems and enable use of that information for revising regulations, codes, and standards (RCS), and permitting hydrogen fueling stations.
Advances in the emerging field of coherent quantum feedback control (CQFC) have led to the development of new capabilities in the areas of quantum control and quantum engineering, with a particular impact on the theory and applications of quantum optical networks. For this study, we consider a CQFC network consisting of two coupled optical parametric oscillators (OPOs) and study the squeezing spectrum of its output field. The performance of this network as a squeezed-light source with desired spectral characteristics is optimized by searching over the space of model parameters with experimentally motivated bounds. We use the QNET package to model the network’s dynamics and the PyGMO package of global optimization algorithms to maximize the degree of squeezing at a selected sideband frequency or the average degree of squeezing over a selected bandwidth. The use of global search methods is critical for identifying the best possible performance of the CQFC network, especially for squeezing at higher-frequency sidebands and higher bandwidths. The results demonstrate that the CQFC network of two coupled OPOs makes it possible to vary the squeezing spectrum, effectively utilize the available pump power, and overall significantly outperform a single OPO. Additionally, the Hessian eigenvalue analysis shows that the squeezing generation performance of the optimally operated CQFC network is robust to small variations of phase parameters.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.