Publications

Results 1–25 of 30
Skip to search filters

Squeezed light quantum imaging - experiment

Soh, Daniel B.; Bisson, Scott E.; Bartolick, Joseph M.

This year, we focused on completing the light squeezing and building the imaging station. In this report, we present a detailed description of a quantum imaging experiment utilizing squeezed light. The entire experimental setup has two parts, namely, the squeezing station where we produce quantum-noise squeezed light where a light quadrature (either the amplitude of the phase) has reduced quantum error below the shot noise of coherent light, and the imaging station where the squeezed light is used to image an object. The squeezing station consists of an optical parametric oscillator operating below the laser threshold. We provide the status quo and the plans for the squeezing imaging experiment.

More Details

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Lossless Quantum Hard-Drive Memory Using Parity-Time Symmetry

Chatterjee, Eric N.; Soh, Daniel B.; Young, Steve M.

We theoretically studied the feasibility of building a long-term read-write quantum memory using the principle of parity-time (PT) symmetry, which has already been demonstrated for classical systems. The design consisted of a two-resonator system. Although both resonators would feature intrinsic loss, the goal was to apply a driving signal to one of the resonators such that it would become an amplifying subsystem, with a gain rate equal and opposite to the loss rate of the lossy resonator. Consequently, the loss and gain probabilities in the overall system would cancel out, yielding a closed quantum system. Upon performing detailed calculations on the impact of a driving signal on a lossy resonator, our results demonstrated that an amplifying resonator is physically unfeasible, thus forestalling the possibility of PT-symmetric quantum storage. Our finding serves to significantly narrow down future research into designing a viable quantum hard drive.

More Details

Microwave response in a topological superconducting quantum interference device

Scientific Reports

Pan, Wei P.; Soh, Daniel B.; Yu, Wenlong; Davids, Paul D.; Nenoff, T.M.

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of large microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.

More Details

A COLD ATOM INTERFEROMETRY SENSOR PLATFORM BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, William K.; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.; Biedermann, Grant B.

Abstract not provided.

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; Biedermann, Grant B.; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, Will K.; Little, Bethany J.; Rosenthal, Randy R.; Wendt, J.R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.

Abstract not provided.

Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

Soh, Daniel B.

We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

More Details

Comprehensive analysis of the optical Kerr coefficient of graphene

Physical Review A

Soh, Daniel B.; Hamerly, Ryan; Mabuchi, Hideo

We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.

More Details

Cladding pumped Q-switched fiber laser using a tapered fiber saturable absorber

CLEO: Science and Innovations, CLEO_SI 2013

Moore, Sean M.; Soh, Daniel B.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

A novel fast method to update the object texture of the triangular mesh hologram is proposed. The angular spectrum of the three-dimensional object represented in triangular meshes is calculated with various pre-defined spectrum shifts. These shifted angular spectrums are added with appropriate coefficients to synthesize the hologram with arbitrary texture on the three-dimensional object in an enhanced speed. © 2013 Optical Society of America.

More Details

A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber

Proceedings of SPIE - The International Society for Optical Engineering

Moore, Sean M.; Soh, Daniel B.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber and gain fibers were first coupled with a free-space telescope to better study the composite system, and then fusion spliced with fiber tapers to match the mode field diameters. ASE generated in the LMA gain fiber preferentially bleaches the SA fiber before depleting the gain, thereby causing the SA fiber to act as a passive saturable absorber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm using a free-space taper, and show that pulses can be generated from 1020 nm to 1040 nm. We scale the pulse energy to 0.40 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance. Finally, we demonstrate 60 μJ 81 ns pulses at 1030 nm in an all fiber architecture using tapered mode field adaptors to match the mode filed diameters of the gain and SA fibers. © 2013 Copyright SPIE.

More Details
Results 1–25 of 30
Results 1–25 of 30