Publications

8 Results

Search results

Jump to search filters

Pluminate: Quantifying aerosol injection behavior from simulation, experimentation and observations

Patel, Lekha; Foulk, James W.; Pattyn, Christian A.; Warburton, Pierce; Shuler, Kurtis; Mcmichael, Lucas; Blossey, Peter; Schmidt, Michael J.; Roesler, Erika L.; Mondragon, Kathryn; Sanchez, Andres L.; Wright, Jeremy B.; Wood, Robert

Marine aerosol injections are a key component in further understanding of both the potentials of deliberate injection for marine cloud brightening (MCB), a potential climate intervention (CI) strategy, and key aerosol-cloud interaction behaviors that currently form the largest uncertainty in global climate model (GCM) predictions of our climate. Since the rate of spread of aerosols in a marine environment directly translates to the effectiveness and ability of aerosol injections in impacting cloud radiative forcing, it is crucial to understand the spatial and temporal extent of injected-aerosol effects following direct injection into marine environments. The ubiquity of ship-injected aerosol tracks from satellite imagery renders observational validation of new parameterizations possible in 2D, however, 3D compatible data is more scarce, and necessary for the development of subgrid scale parameterizations of aerosol-cloud interactions in GCMs. This report introduces two novel parameterizations of atmospheric aerosol injection behavior suitable for both 3D (GCM-compatible) and 2D (observation-related) modeling. Their applicability is highlighted using a wealth of different observational data: small and larger scale salt-aerosol injection experiments conducted at SNL, 3D large eddy simulations of ship-injected aerosol tracks and 2D satellite images of ship tracks. The power of experimental data in enhancing knowledge of aerosol-cloud interactions is in particular emphasized by studying key aerosol microphysical and optical properties as observed through their mixing in cloud-like environments.

More Details

Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-Transfer particle tracking schemes

Geoscientific Model Development

Schauer, Lucas; Schmidt, Michael J.; Engdahl, Nicholas B.; Pankavich, Stephen D.; Benson, David A.; Bolster, Diogo

Lagrangian particle tracking schemes allow a wide range of flow and transport processes to be simulated accurately, but a major challenge is numerically implementing the inter-particle interactions in an efficient manner. This article develops a multi-dimensional, parallelized domain decomposition (DDC) strategy for mass-Transfer particle tracking (MTPT) methods in which particles exchange mass dynamically. We show that this can be efficiently parallelized by employing large numbers of CPU cores to accelerate run times. In order to validate the approach and our theoretical predictions we focus our efforts on a well-known benchmark problem with pure diffusion, where analytical solutions in any number of dimensions are well established. In this work, we investigate different procedures for "tiling"the domain in two and three dimensions (2-D and 3-D), as this type of formal DDC construction is currently limited to 1-D. An optimal tiling is prescribed based on physical problem parameters and the number of available CPU cores, as each tiling provides distinct results in both accuracy and run time. We further extend the most efficient technique to 3-D for comparison, leading to an analytical discussion of the effect of dimensionality on strategies for implementing DDC schemes. Increasing computational resources (cores) within the DDC method produces a trade-off between inter-node communication and on-node work. For an optimally subdivided diffusion problem, the 2-D parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run-up to around 2700 cores, reducing a 5gh simulation to 8gs, while the 3-D algorithm maintains appreciable speedup up to 1700 cores.

More Details

Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation

Advances in Water Resources

Benson, David A.; Bolster, Diogo; Pankavich, Stephen; Schmidt, Michael J.

Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green's function of an underlying PDE. As such, each particle is a sample from the Green's function; therefore, each particle should be distributed according to the Green's function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green's function. When the Green's function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.

More Details

A Computational Information Criterion for Particle-Tracking with Sparse or Noisy Data

Advances in Water Resources

Tran, Nhat T.V.; Benson, David A.; Schmidt, Michael J.; Pankavich, Stephen D.

Traditional probabilistic methods for the simulation of advection-diffusion equations (ADEs) often overlook the entropic contribution of the discretization, e.g., the number of particles, within associated numerical methods. Many times, the gain in accuracy of a highly discretized numerical model is outweighed by its associated computational costs or the noise within the data. We address the question of how many particles are needed in a simulation to best approximate and estimate parameters in one-dimensional advective-diffusive transport. To do so, we use the well-known Akaike Information Criterion (AIC) and a recently-developed correction called the Computational Information Criterion (COMIC) to guide the model selection process. Random-walk and mass-transfer particle tracking methods are employed to solve the model equations at various levels of discretization. Numerical results demonstrate that the COMIC provides an optimal number of particles that can describe a more efficient model in terms of parameter estimation and model prediction compared to the model selected by the AIC even when the data is sparse or noisy, the sampling volume is not uniform throughout the physical domain, or the error distribution of the data is non-IID Gaussian.

More Details
8 Results
8 Results