Publications

10 Results
Skip to search filters

Laser-driven ionization mechanisms of aluminum for single particle aerosol mass spectrometry

Spectrochimica Acta. Part B, Atomic Spectroscopy

Lietz, Amanda M.; Yee, Benjamin T.; Musk, Jeffrey H.; Moffat, Harry K.; Wiemann, Dora K.; Settecerri, Taylor S.; Fergenson, David F.; Omana, Michael A.; Hopkins, Matthew M.

Single particle aerosol mass spectrometry (SPAMS), an analytical technique for measuring the size and composition of individual micron-scale particles, is capable of analyzing atmospheric pollutants and bioaerosols much more efficiently and with more detail than conventional methods which require the collection of particles onto filters for analysis in the laboratory. Despite SPAMS’ demonstrated capabilities, the primary mechanisms of ionization are not fully understood, which creates challenges in optimizing and interpreting SPAMS signals. In this paper, we present a well-stirred reactor model for the reactions involved with the laser-induced vaporization and ionization of an individual particle. The SPAMS conditions modeled in this paper include a 248 nm laser which is pulsed for 8 ns to vaporize and ionize each particle in vacuum. The ionization of 1 μm, spherical Al particles was studied by approximating them with a 0-dimensional plasma chemistry model. The primary mechanism of absorption of the 248 nm photons was pressure-broadened direct photoexcitation to Al(y2D). Atoms in this highly excited state then undergo superelastic collisions with electrons, heating the electrons and populating the lower energy excited states. We found that the primary ionization mechanism is electron impact ionization of various excited state Al atoms, especially Al(y2D). Because the gas expands rapidly into vacuum, its temperature decreases rapidly. The rate of three-body recombination (e- + e- + Al+ → Al + e-) increases at low temperature, and most of the electrons and ions produced recombine within several μs of the laser pulse. The importance of the direct photoexcitation indicates that the relative peak heights of different elements in SPAMS mass spectra may be sensitive to the available photoexcitation transitions. We also discuss the effects of laser intensity, particle diameter, and expansion dynamics.

More Details

CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector

Scientific Reports

Siegrist, Cathryn M.; Kinahan, Sean M.; Settecerri, Taylor S.; Greene, Adrienne C.; Santarpia, Joshua L.

A vaccine for smallpox is no longer administered to the general public, and there is no proven, safe treatment specific to poxvirus infections, leaving people susceptible to infections by smallpox and other zoonotic Orthopoxviruses such as monkeypox. Using vaccinia virus (VACV) as a model organism for other Orthopoxviruses, CRISPR–Cas9 technology was used to target three essential genes that are conserved across the genus, including A17L, E3L, and I2L. Three individual single guide RNAs (sgRNAs) were designed per gene to facilitate redundancy in rendering the genes inactive, thereby reducing the reproduction of the virus. The efficacy of the CRISPR targets was tested by transfecting human embryonic kidney (HEK293) cells with plasmids encoding both SaCas9 and an individual sgRNA. This resulted in a reduction of VACV titer by up to 93.19% per target. Following the verification of CRISPR targets, safe and targeted delivery of the VACV CRISPR antivirals was tested using adeno-associated virus (AAV) as a packaging vector for both SaCas9 and sgRNA. Similarly, AAV delivery of the CRISPR antivirals resulted in a reduction of viral titer by up to 92.97% for an individual target. Overall, we have identified highly specific CRISPR targets that significantly reduce VACV titer as well as an appropriate vector for delivering these CRISPR antiviral components to host cells in vitro.

More Details

A Parameterization Study of Sew-EZ Materials: Types #6 and #8

Omana, Michael A.; Dallman, Ann R.; Wiemann, Dora K.; Settecerri, Taylor S.

Two material types identified by Sew-EZ were tested in various configurations, and under various conditions, by Sandia National Laboratories (SNL). The primary focus of this study was to assess the filtration performance of these two materials and identify if they perform similarly to certified N95 respirators. Testing was conducted on two systems which use distinctly different techniques to characterize the aerosol penetration characteristics of materials: a) R&D Filtration System: A large-scale R&D filtration system was used with testing parameters that mimicked NIOSH guidelines, where possible. Efficiency data as a function of particle size was attained using NaC1 as the test aerosol and a Scanning Mobility Particle Sizer (SMPS) for measurements. A more detailed system description can be found in Omana et al. 2020. b) Automated Tester: A commercial, automated filter tester (100Xs, Air Techniques International) was used to provide penetration/efficiency data for Sew EZ materials. The 100Xs aerosolizes a polydisperse NaC1 aerosol with a consistent concentration and size profile. The 100Xs manual (Air Techniques International 2018) states, "The aerosol particle size and distribution are designed to meet all requirements as defined in the relevant sections of NIOSH 42 CFR, Part 84 (pg. 32)."

More Details
10 Results
10 Results