Publications

10 Results

Search results

Jump to search filters

Compressive strength improvements from noncircular carbon fibers: A numerical study

Composites Science and Technology

Camarena, Ernesto C.; Clarke, Ryan J.; Ennis, Brandon L.

The benefits of high-performance unidirectional carbon fiber composites are limited in many cost-driven industries due to the high cost relative to alternative reinforcement fibers. Low-cost carbon fibers have been previously proposed, but the longitudinal compressive strength continues to be a limiting factor or studies are based on simplifications that warrant further analysis. A micromechanical model is used to (1) determine if the longitudinal compressive strength of composites can be improved with noncircular carbon fiber shapes and (2) characterize why some shapes are stronger than others in compression. In comparison to circular fibers, the results suggest that the strength can be increased by 10%–13% by using a specific six-lobe fiber shape and by 6%–9% for a three-lobe fiber shape. A slight increase is predicted in the compressive strength of the study two-lobe fiber but has the highest uncertainty and sensitivity to fiber orientation and misalignment direction. The underlying mechanism governing the compressive failure of the composites was linked to the unique stress fields created by the lobes, particularly the pressure stress in the matrix. This work provides mechanics-based evidence of strength improvements from noncircular fiber shapes and insight on how matrix yielding is altered with alternative fiber shapes.

More Details

Accurate Modeling of Material Nonlinearities in a Wind Turbine Spar Cap

Journal of Physics: Conference Series

Clarke, Ryan J.; Ennis, Brandon L.; Miller, David A.; Samborsky, Daniel D.

This study presents component-level testing of carbon fiber sandwich beams and the effect of carbon fiber material nonlinearity in its strain response in bending. A simple material model is presented and validated that accurately captures the carbon fiber longitudinal nonlinearity in both the tensile and compressive response. This material model is implemented in a finite element model of the BAR-DRC reference wind blade, a downwind 100-meter rotor blade, and the effects of the nonlinearity on ultimate limit states of the blade are analyzed. The material nonlinearity has negligible effect on the deflection, and material failure predictions. The buckling analysis revealed significant reductions in buckling load factor in the controlling flap direction caused by the material nonlinearity, revealing the importance of including this material model for buckling analyses of wind blade with carbon fiber reinforced spar caps.

More Details

Accurate Modeling of Material Nonlinearities in a Wind Turbine Spar Cap

Journal of Physics: Conference Series

Clarke, Ryan J.; Ennis, Brandon L.; Miller, David A.; Samborsky, Daniel D.

This study presents component-level testing of carbon fiber sandwich beams and the effect of carbon fiber material nonlinearity in its strain response in bending. A simple material model is presented and validated that accurately captures the carbon fiber longitudinal nonlinearity in both the tensile and compressive response. This material model is implemented in a finite element model of the BAR-DRC reference wind blade, a downwind 100-meter rotor blade, and the effects of the nonlinearity on ultimate limit states of the blade are analyzed. The material nonlinearity has negligible effect on the deflection, and material failure predictions. The buckling analysis revealed significant reductions in buckling load factor in the controlling flap direction caused by the material nonlinearity, revealing the importance of including this material model for buckling analyses of wind blade with carbon fiber reinforced spar caps.

More Details

Development of a compressive failure model for carbon fiber composites and associated uncertainties

Composites Science and Technology

Camarena, Ernesto C.; Clarke, Ryan J.; Ennis, Brandon L.

An approach to increase the value of carbon fiber for wind turbines blades, and other compressive strength driven designs, is to identify pathways to increase its cost-specific compressive strength. A finite element model has been developed to evaluate the predictiveness of current finite element methods and to lay groundwork for future studies that focus on improving the cost-specific compressive strength. Parametric studies are conducted to understand which uncertainties in the model inputs have the greatest impact on compressive strength predictions. A statistical approach is also presented that enables the micromechanical model, which is deterministic, to efficiently account for statistical variability in the fiber misalignment present in composite materials; especially if the results from the hexagonal and square pack models are averaged. The model was found to agree well with experimental results for a Zoltek PX-35 pultrusion. The sensitivity studies suggest that the fiber packing and the interface shear strength have the greatest impact on compressive strength prediction for the fiber reinforced polymer studied here. Based on the performance of the modeling approach presented in this work, it is deemed sufficient for future work which will seek to identify carbon fiber composites with improved cost-specific compressive strength.

More Details
10 Results
10 Results