Publications

Results 1–25 of 128

Search results

Jump to search filters

Linkage Transformations in a Three-Dimensional Covalent Organic Framework for High-Capacity Adsorption of Perfluoroalkyl Substances

ACS Applied Materials and Interfaces

Zeppuhar, Andrea N.; Rollins, Devin S.; Huber, Dale L.; Bazan-Bergamino, Emmanuel A.; Chen, Fu; Evans, Hayden A.; Taylor, Mercedes K.

Despite their many advantages, covalent organic frameworks (COFs) built from three-dimensional monomers are synthetically difficult to functionalize. Herein, we provide a new synthetic approach to the functionalization of a three-dimensional covalent organic framework (COF-300) by using a series of solid-state linkage transformations. By reducing the imine linkages of the framework to amine linkages, we produced a more hydrolytically stable material and liberated a nucleophilic amino group, poised for further functionalization. We then treated the amine-linked COF with diverse electrophiles to generate a library of functionalized materials, which we tested for their ability to adsorb perfluoroalkyl substances (PFAS) from water. The framework functionalized with dimethylammonium groups, COF-300-dimethyl, adsorbed more than 250 mg of perfluorooctanoic acid (PFOA) per 1 g of COF, which represents an approximately 14,500-fold improvement over that of COF-300 and underscores the importance of electrostatic interactions to PFAS adsorption performance. In conclusion, this work provides a conceptually new approach to the design and synthesis of functional three-dimensional COFs.

More Details

Quantum Sensed Electron Spin Resonance Discovery Platform (Final Report)

Lilly, Michael; Saleh Ziabari, Maziar S.; Titze, Michael; Henshaw, Jacob D.; Bielejec, Edward S.; Huber, Dale L.; Mounce, Andrew M.

The properties of materials can change dramatically at the nanoscale new and useful properties can emerge. An example is found in the paramagnetism in iron oxide magnetic nanoparticles. Using magnetically sensitive nitrogen-vacancy centers in diamond, we developed a platform to study electron spin resonance of nanoscale materials. To implement the platform, diamond substrates were prepared with nitrogen vacancy centers near the surface. Nanoparticles were placed on the surface using a drop casting technique. Using optical and microwave pulsing techniques, we demonstrated T1 relaxometry and double electron-electron resonance techniques for measuring the local electron spin resonance. The diamond NV platform developed in this project provides a combination of good magnetic field sensitivity and high spatial resolution and will be used for future investigations of nanomaterials and quantum materials.

More Details

Unravelling Magnetic Nanochain Formation in Dispersion for In Vivo Applications

Advanced Materials

Nandakumaran, Nileena; Barnsley, Lester; Ivanov, Sergei A.; Huber, Dale L.; Fruhner, Lisa S.; Leffler, Vanessa; Ehlert, Sascha; Qdemat, Asma; Bhatnagar-Schoffmann, Tanvi; Rucker, Ulrich; Wharmby, Michael T.; Cervellino, Antonio; Dunin-Borkowski, Rafal E.; Bruckel, Thomas; Feygenson, Mikhail

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.

More Details

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross; Lawton, Craig; Halligan, Matthew; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew; Bowman, Tyler C.; Campione, Salvatore; Clem, Paul; Fiero, Andrew; Hansen, Clifford; Llanes, Rodrigo; Pfeiffer, Robert A.; Pierre, Brian J.; San Martin, Luis; Sanabria, David; Schiek, Richard; Slobodyan, Oleksiy; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details

Faceted Branched Nickel Nanoparticles with Tunable Branch Length for High-Activity Electrocatalytic Oxidation of Biomass

Angewandte Chemie - International Edition

Poerwoprajitno, Agus R.; Gloag, Lucy; Watt, John; Cychy, Steffen; Cheong, Soshan; Kumar, Priyank V.; Benedetti, Tania M.; Deng, Chen; Wu, Kuang H.; Marjo, Christopher E.; Huber, Dale L.; Muhler, Martin; Gooding, J.J.; Schuhmann, Wolfgang; Da Wang, Wei; Tilley, Richard D.

Controlling the formation of nanosized branched nanoparticles with high uniformity is one of the major challenges in synthesizing nanocatalysts with improved activity and stability. Using a cubic-core hexagonal-branch mechanism to form highly monodisperse branched nanoparticles, we vary the length of the nickel branches. Lengthening the nickel branches, with their high coverage of active facets, is shown to improve activity for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF), as an example for biomass conversion.

More Details

Magnetic Tunability in RE-DOBDC MOFs via NOx Acid Gas Adsorption

ACS Applied Materials and Interfaces

Henkelis, Susan; Huber, Dale L.; Nenoff, Tina M.

The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal-organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.

More Details

Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy

MRS Bulletin

Watt, John; Huber, Dale L.; Stewart, Phoebe L.

Soft matter has historically been an unlikely candidate for investigation by electron microscopy techniques due to damage by the electron beam as well as inherent instability under a high vacuum environment. Characterization of soft matter has often relied on ensemble-scattering techniques. The recent development of cryogenic transmission electron microscopy (cryo-TEM) provides the soft matter community with an exciting opportunity to probe the structure of soft materials in real space. Cryo-TEM reduces beam damage and allows for characterization in a native, frozen-hydrated state, providing direct visual representation of soft structure. This article reviews cryo-TEM in soft materials characterization and illustrates how it has provided unique insights not possible by traditional ensemble techniques. Soft matter systems that have benefited from the use of cryo-TEM include biological-based “soft” nanoparticles (e.g., viruses and conjugates), synthetic polymers, supramolecular materials as well as the organic–inorganic interface of colloidal nanoparticles. We conclude that while many challenges remain, such as combining structural and chemical analyses; the opportunity for soft matter research to leverage newly developed cryo-TEM techniques continues to excite.

More Details
Results 1–25 of 128
Results 1–25 of 128