Publications

Results 1–25 of 198

Search results

Jump to search filters

Hydrogen Compatible Materials Workshop

Zimmerman, Jonathan A.; San Marchi, Christopher W.; Ronevich, Joseph A.

This report serves as the proceedings of the Hydrogen Compatible Materials Workshop held virtually by Sandia National Laboratories on December 2-3, 2020. The purpose of the workshop was to assemble subject matter experts at Sandia and its national laboratory partners within the U.S. Department of Energy's (DOE) Hydrogen Materials Compatibility (H-Mat) Consortium with public and private stakeholders in the research, development and deployment of hydrogen technologies to discuss the topic of hydrogen compatible materials. This workshop was designed to build on past events and current research and development (R&D) efforts to develop a forward-looking vision that identifies gaps and challenges for the next decade. In particular, the workshop organizers sought to expand their understanding of hydrogen compatible materials needs for power, manufacturing and other industrial uses to enable deeper impact and widespread use of hydrogen while continuing to address open questions in hydrogen-powered transportation of concern to Original Equipment Manufacturers, hydrogen producers, materials & component suppliers and other private entities. The workshop was primarily organized as a series of panel-led discussions on the topics of hydrogen-enabled transportation, heating and power, and industrial uses. Each panel consisted of 2-3 subject matter experts who relayed their perspectives on a set of framing questions developed to facilitate discussion by the broader group of workshop participants. By the workshop's conclusion, the participants identified and prioritized a list of technical challenges for each panel topic where further R&D is warranted.

More Details

A Review of Sandia Energy Storage Research Capabilities and Opportunities (2020 to 2030)

Ho, Clifford K.; Atcitty, Stanley A.; Bauer, Stephen J.; Borneo, Daniel R.; Byrne, Raymond H.; Chalamala, Babu C.; Lamb, Joshua H.; Lambert, Timothy N.; Schenkman, Benjamin L.; Spoerke, Erik D.; Zimmerman, Jonathan A.

Large-scale integration of energy storage on the electric grid will be essential to enabling greater penetration of intermittent renewable energy sources, modernizing the grid for increased flexibility security, reliability, and resilience, and enabling cleaner forms of transportation. The purpose of this report is to summarize Sandia's research and capabilities in energy storage and to provide a preliminary roadmap for future efforts in this area that can address the ongoing program needs of DOE and the nation. Mission and vision statements are first presented followed by an overview of the organizational structure at Sandia that provides support and activities in energy storage. Then, a summary of Sandia's energy storage capabilities is presented by technology, including battery storage and materials, power conversion and electronics, subsurface-based energy storage, thermal/thermochemical energy storage, hydrogen storage, data analytics/systems optimization/controls, safety of energy storage systems, and testing/demonstrations/model validation. A summary of identified gaps and needs is also presented for each technology and capability.

More Details

Stacking Fault Energy Based Alloy Screening for Hydrogen Compatibility

JOM. Journal of the Minerals, Metals & Materials Society

Gibbs, Paul J.; Hough, Patricia D.; Thurmer, Konrad T.; Somerday, Brian P.; San Marchi, Christopher W.; Zimmerman, Jonathan A.

The selection of austenitic stainless steels for hydrogen service is challenging since there are few intrinsic metrics that relate alloy composition to hydrogen degradation. One such metric, explored here, is intrinsic stacking fault energy. Stacking fault energy has an influence on the character and structure of dislocations and on the formation of secondary crystalline phases created during mechanical deformation in austenitic alloys. In this work, a data-driven model for the intrinsic stacking fault energy of common austenitic stainless steel alloys is applied to compare the relative degradation of tensile performance in the presence of hydrogen. A transition in the tensile reduction of area of both 300-series and manganese stabilized stainless steels is observed at a calculated stacking fault energy of approximately 43 mJ m-2, below which pronounced hydrogen degradation on tensile ductility is observed. The model is also applied to suggest alloying strategies for low nickel austenitic stainless steels for hydrogen service. Lastly, through this investigation, we find that calculated intrinsic stacking fault energy is a high-throughput screening metric that enables the ranking of the performance of a diverse range of austenitic stainless steel compositions, as well as the identification of new alloys, with regard to hydrogen compatibility.

More Details

H2@RailSM Workshop

Zimmerman, Jonathan A.; Hensley, Mattie H.

The workshop on hydrogen rail applications was attended by representatives from over 40 organizations across academia, government, and industry. The workshop agenda is provided in Appendix A, and a list of workshop organizations is provided in Appendix B. The first day of the workshop focused on domestic and international government agency perspectives. The second day highlighted technology status and development, R&D topics, and industry perspectives on hydrogen rail activities. Topic sessions were followed by panel discussions on relative challenges and issues. This report captures the key themes discussed by the workshop participants and provides details on specific recommendations and collaborative opportunities. The report includes presentation overviews, panel discussion summaries, and a summary of major outcomes, recommendations, and envisioned pathways forward in the development and deployment of hydrogen rail technology and international collaboration.

More Details

Materials and Hydrogen Isotope Science at Sandia's California Laboratory

Zimmerman, Jonathan A.; Balch, Dorian K.; Bartelt, Norman C.; Buchenauer, D.A.; Catarineu, Noelle R.; Cowgill, D.F.; El Gabaly Marquez, Farid E.; Karnesky, Richard A.; Kolasinski, Robert K.; Medlin, Douglas L.; Robinson, David R.; Ronevich, Joseph A.; Sabisch, Julian E.; San Marchi, Christopher W.; Sills, Ryan B.; Smith, Thale R.; Sugar, Joshua D.; Zhou, Xiaowang Z.

Abstract not provided.

Review Article: Case studies in future trends of computational and experimental nanomechanics

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Gerberich, William; Tadmor, Ellad B.; Kysar, Jeffrey; Zimmerman, Jonathan A.; Minor, Andrew M.; Szlufarska, Izabela; Amodeo, Jonathan; Devincre, Benoit; Hintsala, Eric; Ballarini, Roberto

With rapidly increasing numbers of studies of new and exotic material uses for perovskites and quasicrystals, these demand newer instrumentation and simulation developments to resolve the revealed complexities. One such set of observational mechanics at the nanoscale is presented here for somewhat simpler material systems. The expectation is that these approaches will assist those materials scientists and physicists needing to verify atomistic potentials appropriate to the nanomechanical understanding of increasingly complex solids. The five following segments from nine University, National and Industrial Laboratories both review and forecast where some of the important approaches will allow a confirming of how in situ mechanics and nanometric visualization might unravel complex phenomena. These address two-dimensional structures, temporal models for the nanoscale, atomistic and multiscale friction fundamentals, nanoparticle surfaces and interfaces and nanomechanical fracture measurements, all coupled to in situ observational techniques. Rapid future advances in the applicability of such materials science solutions appear guaranteed.

More Details

Out Brief for the Structural Reliability Partnership Workshop

Boyce, Brad B.; Fang, H.E.; Zimmerman, Jonathan A.; Kolski, Alyssa J.; Amann, Clare M.

The Structural Reliability Partnership Workshop was held in Albuquerque, NM on August 29-30, 2017 and was hosted by Sandia National Laboratories. Attendees were present from academia, industry and several other national laboratories. The workshop kicked off with an introduction to the SRP to familiarize potential members with what the purpose, structure and benefits would be to their organization. Technical overviews were given on several topics by attendees from each sector – national labs, universities and industry – to provide a snapshot of the type of work that is currently being conducted on structural reliability. Attendees were then given the opportunity to suggest and discuss potential Challenge Scenario topics. Three were ultimately decided upon as being the most important: Additive Manufacturing, Hydrogen Pipeline Steels, and Bolted Joined Structures. These were then analyzed using Quad Charts to determine What, How, Who, and Why these areas would be further investigated. Rather than restricting future research to only one area, the option was left open to investigate both the top two, depending on interest and cost associated with hosting such an event. More informal collaboration may be undertaken for the third topic if members have time and interest. Other items discussed pertained to the organization, structure and policies of the Partnership. Topics including Data Management, IP, and mechanisms of partnering/information sharing were touched upon but final decisions were not made. Further action is needed before this can be done. Action items were outlined and assigned, where possible. The next workshop is to be held in early August 2018 in Boulder, CO and is to be hosted by NIST. In the interim, quarterly updates are to take place via WebEx to maintain a line of communication and to ensure progress on both the administrative and technical tasks.

More Details
Results 1–25 of 198
Results 1–25 of 198