Publications

10 Results

Search results

Jump to search filters

Early Detection of Li-Ion Battery Thermal Runaway Using Commercial Diagnostic Technologies

Journal of the Electrochemical Society

Torres-Castro, Loraine T.; Bates, Alex M.; Johnson, Nathan B.; Quintana, Genaro Q.; Gray, Lucas S.; Langendorf, Jill L.

The rate of electric vehicle (EV) adoption, powered by the Li-ion battery, has grown exponentially; largely driven by technological advancements, consumer demand, and global initiatives to reduce carbon emissions. As a result, it is imperative to understand the state of stability (SoS) of the cells inside an EV battery pack. That understanding will enable the warning of or prevention against catastrophic failures that can lead to serious injury or even, loss of life. The present work explores rapid electrochemical impedance spectroscopy (EIS) coupled with gas sensing technology as diagnostics to monitor cells and packs for failure markers. These failure markers can then be used for onboard assessment of SoS. Experimental results explore key changes in single cells and packs undergoing thermal or electrical abuse. Rapid EIS showed longer warning times, followed by VOC sensors, and then H2 sensors. While rapid EIS gives the longest warning time, with the failure marker often appearing before the cell vents, the reliability of identifying impedance changes in single cells within a pack decreases as the pack complexity increases. This provides empirical evidence to support the significant role that cell packaging and battery engineering intricacies play in monitoring the SoS.

More Details

Are solid-state batteries safer than lithium-ion batteries?

Joule

Bates, Alex M.; Preger, Yuliya P.; Torres-Castro, Loraine T.; Harrison, Katharine L.; Harris, Stephen J.; Hewson, John C.

All-solid-state batteries are often assumed to be safer than conventional Li-ion ones. In this work, we present the first thermodynamic models to quantitatively evaluate solid-state and Li-ion battery heat release under several failure scenarios. The solid-state battery analysis is carried out with an Li7La3Zr2O12 solid electrolyte but can be extended to other configurations using the accompanying spreadsheet. We consider solid-state batteries that include a relatively small amount of liquid electrolyte, which is often added at the cathode to reduce interfacial resistance. While the addition of small amounts of liquid electrolyte increases heat release under specific failure scenarios, it may be small enough that other considerations, such as manufacturability and performance, are more important commercially. We show that short-circuited all-solid-state batteries can reach temperatures significantly higher than conventional Li-ion, which could lead to fire through flammable packaging and/or nearby materials. Our work highlights the need for quantitative safety analyses of solid-state batteries.

More Details
10 Results
10 Results